

The Hidden World of Bandits Alessandro LAZARIC (INRIA-Lille)

Workshop on Sequential Learning and Applications, Toulouse

November 9, 2015

Joint work with

- \triangleright Mohammad Azar (Northwestern University)
- \blacktriangleright Emma Brunskill (CMU)
- ▶ Anima Anandkumar (UCI)
- \blacktriangleright Kamyar Azizzade (UCI)

The Hidden World of Bandits

Many bandit problems / contexts / observations

The Hidden World of Bandits

Many bandit problems / contexts / observations

Few hidden structures

A. LAZARIC - The Hidden World of Bandits November 9, 2015 - 3/45

The Hidden World of Bandits

Many bandit problems / contexts / observations

Few hidden structures

 \Rightarrow How do we learn *structures and solutions* at the same time?

'nrío

Outline

[Sequential Transfer in MAB with Finite Set of Models](#page-5-0)

[Learning in Partially Observable MDPs](#page-41-0)

[Conclusions](#page-70-0)

A. LAZARIC - The Hidden World of Bandits November 9, 2015 - 4/45

Multi-armed Bandit with Hidden Type

A. LAZARIC - The Hidden World of Bandits November 9, 2015 - 5/45

Multi-armed Bandit with Hidden Type

A. LAZARIC - The Hidden World of Bandits November 9, 2015 - 6/45

Multi-armed Bandit with Hidden Type

A. LAZARIC - The Hidden World of Bandits November 9, 2015 - 7/45

Multi-armed Bandit with Hidden Type

Multi-armed Bandit with Hidden Type

Multi-armed Bandit with *Hidden* Type

Learning the **hidden type** of bandit significantly reduces the regret

nzía.

Multi-armed Bandit with Hidden Type

Learning the **hidden type** of bandit significantly reduces the regret

[Agrawal et al., IEEE TAC'89] [Azar et al., NIPS'13], [Maillard et al., ICML'14] [Lattimore and Munos, NIPS'14]

nzío.

The Setting

 \triangleright Set of arms $A = \{1, \ldots, K\}$

• Set of types
$$
\Theta = \{\theta_1, \ldots, \theta_m\}
$$

- \blacktriangleright Distribution over types ρ
- ► Arm mean $\mu_i(\theta)$, best arm $i_*(\theta)$, best value $\mu_*(\theta)$

$$
\blacktriangleright \text{ Arm gap } \Delta_i(\theta) = \mu_*(\theta) - \mu_i(\theta)
$$

• Model gap
$$
\Gamma_i(\theta, \theta') = |\mu_i(\theta) - \mu_i(\theta')|
$$

The Protocol

nrío

The Protocol

► Task regret
$$
R_n^j = \sum_{i \neq i_*(\bar{\theta}^j)} T_{i,n}^j \Delta_i(\bar{\theta}^j)
$$

► Global regret
$$
R_J = \sum_{j=1}^{J} R_n^j
$$

The Protocol

▶ Task regret
$$
R_n^j = \sum_{i \neq i_*(\bar{\theta}^j)} T_{i,n}^j \Delta_i(\bar{\theta}^j)
$$

► Global regret
$$
R_J = \sum_{j=1}^{J} R_n^j
$$

 \Rightarrow Usually *n* is small and *J* is large

The Advantage of Knowing Θ

Assumption: $\{\mu_i(\theta)\}_{i,\theta}$ are known

The Advantage of Knowing Θ

Assumption: $\{\mu_i(\theta)\}_{i,\theta}$ are known

The Advantage of Knowing Θ

The Advantage of Knowing Θ

The Advantage of Knowing Θ

Theorem

$$
\mathbb{E}[R_n(\bar{\theta})] \leq \sum_{i \in \mathcal{A}_+} \frac{2\log(K_* n^3)}{\min_{\theta \in \Theta_{+,i}} \Gamma_i(\theta, \bar{\theta})}
$$

The Advantage of Knowing Θ

Theorem

Given $\{\mu_i(\theta)\}_{i,\theta}$, the mUCB achieves a per-task regret with type $\bar{\theta}$

$$
\mathbb{E}[R_{n}(\bar{\theta})]\leq \sum_{i\in\mathcal{A}_{+}}\frac{2\log(K_{*}n^{3})}{\min_{\theta\in\Theta_{+,i}}\Gamma_{i}(\theta,\bar{\theta})}
$$

► Optimistic types $\Theta_+(\bar{\theta}) = \{ \theta : \mu_*(\theta) > \mu_*(\bar{\theta}) \}$

The Advantage of Knowing Θ

Theorem

$$
\mathbb{E}[R_{n}(\bar{\theta})] \leq \sum_{i \in \mathcal{A}_{+}} \frac{2\log(K_{*}n^{3})}{\min_{\theta \in \Theta_{+,i}}\Gamma_{i}(\theta,\bar{\theta})}
$$

- ► Optimistic types $\Theta_+(\bar{\theta}) = \{ \theta : \mu_*(\theta) > \mu_*(\bar{\theta}) \}$
- ► Optimistic types with optimal arm i , $\Theta_{+,i}(\bar{\theta}) = \{ \theta \in \Theta_+ : i_*(\theta) = i \}$

The Advantage of Knowing Θ

Theorem

$$
\mathbb{E}[R_{n}(\bar{\theta})] \leq \sum_{i \in \mathcal{A}_{+}} \frac{2\log(K_{*}n^{3})}{\min_{\theta \in \Theta_{+,i}}\Gamma_{i}(\theta,\bar{\theta})}
$$

- ► Optimistic types $\Theta_+(\bar{\theta}) = \{ \theta : \mu_*(\theta) > \mu_*(\bar{\theta}) \}$
- ► Optimistic types with optimal arm i , $\Theta_{+,i}(\bar{\theta}) = \{ \theta \in \Theta_+ : i_*(\theta) = i \}$
- ► Possible optimal arms $\mathcal{A}_*(\Theta') = \{i \in \mathcal{A} : \exists \theta \in \Theta' : i = i_*(\theta)\}\$

The Advantage of Knowing Θ

Theorem

$$
\mathbb{E}[R_{n}(\bar{\theta})] \leq \sum_{i \in \mathcal{A}_{+}} \frac{2\log(K_{*}n^{3})}{\min_{\theta \in \Theta_{+,i}}\Gamma_{i}(\theta,\bar{\theta})}
$$

- ► Optimistic types $\Theta_+(\bar{\theta}) = \{ \theta : \mu_*(\theta) > \mu_*(\bar{\theta}) \}$
- ► Optimistic types with optimal arm i , $\Theta_{+,i}(\bar{\theta}) = \{ \theta \in \Theta_+ : i_*(\theta) = i \}$
- ► Possible optimal arms $\mathcal{A}_*(\Theta') = \{i \in \mathcal{A} : \exists \theta \in \Theta' : i = i_*(\theta)\}\$
- Possible optimal arms of optimistic types $\mathcal{A}_+ = \mathcal{A}_*(\Theta_+(\bar{\theta}))$

Consider the random vector $\boldsymbol{Z} \in \mathbb{R}^K$, such that $[\boldsymbol{Z}]_i$ is obtained by sampling θ from ρ and and then sampling a reward from $\nu_i(\theta)$

- \blacktriangleright First moment $\mathbb{E}[\mathcal{Z} | \theta] = \boldsymbol{\mu}(\theta) \in \mathbb{R}^K$
- **►** Second moment $M_2 = \mathbb{E}[\mathbf{Z}_1 \otimes \mathbf{Z}_2]$
- **►** Third moment $M_3 = \mathbb{E}[Z_1 \otimes Z_2 \otimes Z_3]$

Consider the random vector $\boldsymbol{Z} \in \mathbb{R}^K$, such that $[\boldsymbol{Z}]_i$ is obtained by sampling θ from ρ and and then sampling a reward from $\nu_i(\theta)$

- \blacktriangleright First moment $\mathbb{E}[\mathcal{Z} | \theta] = \boldsymbol{\mu}(\theta) \in \mathbb{R}^K$
- **►** Second moment $M_2 = \mathbb{E}[\mathbf{Z}_1 \otimes \mathbf{Z}_2]$
- **►** Third moment $M_3 = \mathbb{E}[Z_1 \otimes Z_2 \otimes Z_3]$

$$
M_2 \stackrel{\mathit{iid}}{=} \sum_{\theta \in \Theta} \rho(\theta) \mathbb{E}[\boldsymbol{Z}_1 | \theta] \otimes \mathbb{E}[\boldsymbol{Z}_2 | \theta] = \sum_{\theta \in \Theta} \rho(\theta) \boldsymbol{\mu}(\theta) \otimes \boldsymbol{\mu}(\theta)
$$

$$
M_3 \stackrel{\textit{iid}}{=} \sum_{\theta \in \Theta} \rho(\theta) \mathbb{E}[\mathcal{Z}_1 | \theta] \otimes \mathbb{E}[\mathcal{Z}_2 | \theta] \otimes \mathbb{E}[\mathcal{Z}_3 | \theta] = \sum_{\theta \in \Theta} \rho(\theta) \mu(\theta) \otimes \mu(\theta) \otimes \mu(\theta)
$$

Consider the random vector $\boldsymbol{Z} \in \mathbb{R}^K$, such that $[\boldsymbol{Z}]_i$ is obtained by sampling θ from ρ and and then sampling a reward from $\nu_i(\theta)$

- \blacktriangleright First moment $\mathbb{E}[\mathcal{Z} | \theta] = \boldsymbol{\mu}(\theta) \in \mathbb{R}^K$
- **►** Second moment $M_2 = \mathbb{E}[\mathbf{Z}_1 \otimes \mathbf{Z}_2]$
- **►** Third moment $M_3 = \mathbb{E}[Z_1 \otimes Z_2 \otimes Z_3]$

$$
M_2 \stackrel{\textit{iid}}{=} \sum_{\theta \in \Theta} \rho(\theta) \mathbb{E}[\boldsymbol{Z}_1 | \theta] \otimes \mathbb{E}[\boldsymbol{Z}_2 | \theta] = \sum_{\theta \in \Theta} \rho(\theta) \boldsymbol{\mu}(\theta) \otimes \boldsymbol{\mu}(\theta)
$$

$$
M_3 \stackrel{\textit{iid}}{=} \sum_{\theta \in \Theta} \rho(\theta) \mathbb{E}[\boldsymbol{Z}_1 | \theta] \otimes \mathbb{E}[\boldsymbol{Z}_2 | \theta] \otimes \mathbb{E}[\boldsymbol{Z}_3 | \theta] = \sum_{\theta \in \Theta} \rho(\theta) \boldsymbol{\mu}(\theta) \otimes \boldsymbol{\mu}(\theta) \otimes \boldsymbol{\mu}(\theta)
$$

 \Rightarrow $\rho(\theta)$ and $\mu(\theta)$ are the result of tensor decomposition of M_3 (after orthogonalization using M_2)

Learning the Hidden Types

Assumption: $T_{i,n}^j \geq 3$ (can be forced by the algorithm)

Assumption: $T_{i,n}^j \geq 3$ (can be forced by the algorithm)

At each episode / split the samples in three (independent) batches

$$
[\widetilde{\mu}_{1}']_i = \frac{3}{\mathcal{T}_{i,n}^l} \sum_{t=1}^{\mathcal{T}_{i,n}^l/3} Y_{i,t}^l, \quad [\widetilde{\mu}_{2}']_i = \frac{3}{\mathcal{T}_{i,n}^l} \sum_{t=\mathcal{T}_{i,n}^l/3+1}^{2\mathcal{T}_{i,n}^l/3} Y_{i,t}^l, \quad [\widetilde{\mu}_{3}']_i = \frac{3}{\mathcal{T}_{i,n}^l} \sum_{t=2\mathcal{T}_{i,n}^l/3+1}^{\mathcal{T}_{i,n}^l} Y_{i,t}^l,
$$

Assumption: $T_{i,n}^j \geq 3$ (can be forced by the algorithm)

At each episode / split the samples in three (independent) batches

$$
[\widetilde{\mu}_{1}']_i = \frac{3}{T_{i,n}'}\sum_{t=1}^{T_{i,n}'/3}Y_{i,t}', \quad [\widetilde{\mu}_{2}']_i = \frac{3}{T_{i,n}'}\sum_{t=T_{i,n}'/3+1}^{2T_{i,n}'/3}Y_{i,t}', \quad [\widetilde{\mu}_{3}']_i = \frac{3}{T_{i,n}'}\sum_{t=2T_{i,n}'/3+1}^{T_{i,n}'}Y_{i,t}',
$$

Compute estimates

$$
\widehat{M}_2 = \frac{1}{j} \sum_{l=1}^j \widetilde{\boldsymbol{\mu}}_1^l \otimes \widetilde{\boldsymbol{\mu}}_2^l, \qquad \text{and} \qquad \widehat{M}_3 = \frac{1}{j} \sum_{l=1}^j \widetilde{\boldsymbol{\mu}}_1^l \otimes \widetilde{\boldsymbol{\mu}}_2^l \otimes \widetilde{\boldsymbol{\mu}}_3^l.
$$

Learning the Hidden Types

Lemma

 \widehat{M}_2 and \widehat{M}_3 are unbiased estimators of M_2 and M_3 and*

$$
||M_3 - \widehat{M}_3|| \leq K^{3/2} \sqrt{\frac{\log(K/\delta)}{j}}; \hspace{0.5cm} ||M_2 - \widehat{M}_2|| \leq K \sqrt{\frac{\log(K/\delta)}{j}}
$$

with high probability w.r.t. tasks and samples randomness.

*Up to constants

Learning the Hidden Types

Assumptions

- $\blacktriangleright \{\mu(\theta)\}_\theta$ are linearly independent (i.e., $m < K$)
- $\rho(\theta) > 0$ for all $\theta \in \Theta$

Learning the Hidden Types

Assumptions

- $\blacktriangleright \{\mu(\theta)\}_\theta$ are linearly independent (i.e., $m < K$)
- $\rho(\theta) > 0$ for all $\theta \in \Theta$

Theorem

There exists J_0 such that for any $j \geq J_0$ (up to permutation π)

$$
\|\boldsymbol{\mu}(\theta) - \widehat{\boldsymbol{\mu}}^j(\pi(\theta))\| \le \epsilon^j := C(\Theta)K^{2.5}m^2\sqrt{\frac{\log(K/\delta)}{j}}
$$

with

$$
\mathcal{C}(\Theta):=\mathcal{C}\lambda_{\max} \sqrt{\sigma_{\max}/\sigma_{\min}^3}\left(\sigma_{\max}/\Gamma_{\sigma} + 1/\sigma_{\min} + 1/\sigma_{\max}\right)
$$

with high probability and independently from the bandit strategy (as soon as $T_{i,n}^{\prime} \geq 3$).

The Advantage of Learning Θ

[Sequential Transfer in MAB with Finite Set of Models](#page-36-0)

The Advantage of Learning Θ

[Sequential Transfer in MAB with Finite Set of Models](#page-37-0)

The Advantage of Learning Θ

Theorem

If tUCB is run over J episodes then

$$
R_J \leq \sum_{j=1}^J \bigg(\sum_{i \in \mathcal{A}_1^j} \min \bigg\{ \frac{2 \log (Kn^2/\delta)}{\Delta_i(\bar{\theta}^j)^2}, \frac{\log (Kn^2/\delta)}{2 \min\limits_{\theta \in \Theta_{i,+}^j(\bar{\theta}^j)} \widehat{\Gamma}_i^j(\theta; \bar{\theta}^j)^2} \bigg\} \Delta_i(\bar{\theta}^j) + \sum_{i \in \mathcal{A}_2^j} \frac{2 \log (Kn^2/\delta)}{\Delta_i(\bar{\theta}^j)} \bigg),
$$

where (because of ϵ^j)

- \blacktriangleright \mathcal{A}_1^j $\frac{1}{1}$ arms optimal for models that can be discarded
- \blacktriangleright \mathcal{A}^j $\frac{1}{2}$ arms optimal for models that cannot be discarded

$$
|inia-|
$$

[Sequential Transfer in MAB with Finite Set of Models](#page-38-0)

The Advantage of Learning Θ

 $K = 7$, $m = 5$ with small model gaps

Pros

- **F** Smooth integration of LVM with MAB
- \triangleright Performance is never worse than UCB and it gets better at each task

Pros

- ▶ Smooth integration of LVM with MAB
- \triangleright Performance is never worse than UCB and it gets better at each task

Cons

- \blacktriangleright Constants in ϵ^j are mostly unknown
- \triangleright Residual exploration of all arms

Pros

- \triangleright Smooth integration of LVM with MAB
- \triangleright Performance is never worse than UCB and it gets better at each task

Cons

- \blacktriangleright Constants in ϵ^j are mostly unknown
- \triangleright Residual exploration of all arms

Questions

- \triangleright Is it possible to "accelerate" the model learning by exploring more at the beginning?
- \blacktriangleright How do we estimate m ?

Outline

[Sequential Transfer in MAB with Finite Set of Models](#page-5-0)

[Learning in Partially Observable MDPs](#page-41-0)

[Conclusions](#page-70-0)

A. LAZARIC - The Hidden World of Bandits November 9, 2015 - 25/45

Ínría-

Ínría-

Ínría-

Ínría-

Partially Observable Markov Decision Process

Learning the **observation model** allows learning better policies

nrío

A finite POMDP M is a tuple $\langle X, A, Y, R, f_T, f_R, f_O \rangle$

- \triangleright X is a finite state space with $|\mathcal{X}| = X$
- \blacktriangleright A is a finite action space with $|A| = A$
- \triangleright y is a finite observation space with $|y| = Y$
- \triangleright R is a finite reward space with $|\mathcal{R}| = R$ bounded by r_{max}
- If f_T is the transition density $f_T(x'|x, a)$
- In f_R is the reward density $f_R(r|x, a)$
- \triangleright $f_{\mathcal{O}}$ is the observation density $f_{\mathcal{O}}(y|x)$

The Setting

Ínría-

The Setting

 \Rightarrow unlike the bandit model, here observations, actions, and hidden variables are very much **dependent**

The Setting

Policies

I Deterministic memory-less: **bad**

Policies

- **I** Deterministic memory-less: **bad**
- ▶ Stochastic memory-less: *ok* [Barto et al., IEEE-SMC'83], [Loch, Singh, ICML'98], [Williams, Singh, NIPS'98], [Li et al., EJ of Op. Research'2011]

Policies

- **I** Deterministic memory-less: **bad**
- ▶ Stochastic memory-less: *ok* [Barto et al., IEEE-SMC'83], [Loch, Singh, ICML'98], [Williams, Singh, NIPS'98], [Li et al., EJ of Op. Research'2011]
- Deterministic history-based: *optimal* (requires belief state)

- A (stochastic memory-less) policy π
	- is defined by the density $f_{\pi}(a|y)$
	- induces a stationary distribution $\omega_{\pi}(x)$
	- \blacktriangleright has an average reward $\eta_\pi = \sum_{\mathsf{x}\in\mathcal{X}} \omega(\mathsf{x}) \overline{r}_\pi(\mathsf{x})$
- \Rightarrow Optimal policy $\pi^* = \argmax_{\pi} \eta_{\pi}$

$$
\Rightarrow \text{Regret } R_{\mathcal{T}} = T\eta^* - \sum_{t=1}^{T} r_t
$$

Assumptions

- 1. Set of policies $\mathcal{P} = {\pi : \min_{y} \min_{\theta} f_{\pi}(a|y) > \pi_{\min}}$
- 2. For any policy $\pi\in\mathcal{P}$, the Markov chain $f_{\mathcal{T},\pi}(\mathsf{x}'|\mathsf{x})$ is ergodic
- 3. The observation model is not aliased (no two states with same observations)
- 4. The transition model is not aliased (no two states with same transitions)

Assumptions

- 1. Set of policies $\mathcal{P} = {\pi : \min_{y} \min_{a} f_{\pi}(a|y) > \pi_{\min}}$
- 2. For any policy $\pi\in\mathcal{P}$, the Markov chain $f_{\mathcal{T},\pi}(\mathsf{x}'|\mathsf{x})$ is ergodic
- 3. The observation model is not aliased (no two states with same observations)
- 4. The transition model is not aliased (no two states with same transitions)

Good news: 3 and 4 can be relaxed Bad news: 1 and 2 cannot be removed (maybe...)

The Multi-View Model

- Fix policy $\pi \in \mathcal{P}$
- For each action *l*, if $a_t = l$, construct views:

$$
\vec{v}_{1,t}^{(l)} = (a_{t-1}, y_{t-1}, r_{t-1}); \ \ \vec{v}_{2,t}^{(l)} = (y_t, r_{t-1}); \ \ \vec{v}_{1,t}^{(l)} = (a_{t+1}, y_{t+1}, r_{t+1})
$$

The Multi-View Model

- Fix policy $\pi \in \mathcal{P}$
- For each action *l*, if $a_t = l$, construct views:

$$
\vec{v}_{1,t}^{(l)} = (a_{t-1}, y_{t-1}, r_{t-1}); \ \ \vec{v}_{2,t}^{(l)} = (y_t, r_{t-1}); \ \ \vec{v}_{1,t}^{(l)} = (a_{t+1}, y_{t+1}, r_{t+1})
$$

 $\Rightarrow \vec{v}_{1,t}^{(l)}$ $\vec{v}_{1,t}^{(l)}, \vec{v}_{2,t}^{(l)}$ $\vec{v}_{2,t}^{(l)}, \vec{v}_{3,t}^{(l)}$ $\mathbf{x}_{3,t}^{(t)}$ are three *independent* views of x_t (ie, conditioned on x_t they are independent random variables)

The Multi-View Model

Construct matrices

$$
\begin{aligned} M_2^{(l)} &= \mathbb{E}\left[\vec{v}_1^{(l)} \otimes \vec{v}_2^{(l)}\right] \\ M_3^{(l)} &= \mathbb{E}\left[\vec{v}_1^{(l)} \otimes \vec{v}_2^{(l)} \otimes \vec{v}_3^{(l)}\right] \end{aligned}
$$

The Multi-View Model

Construct matrices

$$
\begin{aligned} M_2^{(I)} &= \mathbb{E}\left[\vec{v}_1^{(I)} \otimes \vec{v}_2^{(I)}\right] \\ M_3^{(I)} &= \mathbb{E}\left[\vec{v}_1^{(I)} \otimes \vec{v}_2^{(I)} \otimes \vec{v}_3^{(I)}\right] \end{aligned}
$$

 \Rightarrow M₃ is neither symmetric nor orthogonal!

The Multi-View Model

Construct matrices

$$
\begin{aligned} M_2^{(1)} &= \mathbb{E}\left[\vec{v}_1^{(1)} \otimes \vec{v}_2^{(1)}\right] \\ M_3^{(1)} &= \mathbb{E}\left[\vec{v}_1^{(1)} \otimes \vec{v}_2^{(1)} \otimes \vec{v}_3^{(1)}\right] \end{aligned}
$$

 \Rightarrow M_3 is neither symmetric nor orthogonal!

 \Rightarrow skipping details on how to symmetrize and orthogonalize (*hint*: transform the views and use M_2)

Recovering the POMDP parameters

- Given one single trajectory of T steps
- \blacktriangleright Use empirical estimates of $M_2^{(1)}$ $\mathcal{U}_2^{(1)}$ and $\mathcal{M}_3^{(1)}$ $\frac{1}{3}$ for each action
- \triangleright Symmetrize and orthogonalize the tensor
- \blacktriangleright Estimate the model of the views

$$
\vec{v}_{1,t}^{(l)} = (a_{t-1}, y_{t-1}, r_{t-1}); \ \ \vec{v}_{2,t}^{(l)} = (y_t, r_{t-1}); \ \ \vec{v}_{1,t}^{(l)} = (a_{t+1}, y_{t+1}, r_{t+1})
$$

From estimated views reconstruct the densities \widehat{f}_O , \widehat{f}_T , and \widehat{f}_R (this step is **non-trivial**)

Recovering the POMDP parameters

Theorem

For any state i and action I, with prob. $1 - \delta$

$$
||\widehat{f}_O(\cdot|i) - f_O(\cdot|i)||_1 \leq \mathcal{B}_O := \min_{l=1...A} \frac{YC_O}{\lambda_2^{(l)}} \sqrt{\frac{d' \log(1/\delta)}{N_l}}
$$

$$
||\widehat{f}_R(\cdot|i,l) - f_R(\cdot|i,l)||_1 \leq \mathcal{B}_R := \frac{RC_R}{\lambda_2^{(l)}} \sqrt{\frac{d' \log(1/\delta)}{N_l}}
$$

$$
||\widehat{f}_T(\cdot|\cdot,l) - f_T(\cdot|\cdot,l)||_F \leq \mathcal{B}_T := \max_{l'=1,...,A} \frac{C_T d^2 A}{\lambda_2^{(l')}} \sqrt{\frac{d \log(1/\delta)}{N_{l'}}}
$$

Recovering the POMDP parameters

Theorem

Ínrío-

For any state i and action I, with prob. $1 - \delta$

$$
||\widehat{f}_0(\cdot|i) - f_0(\cdot|i)||_1 \leq \mathcal{B}_0 := \min_{l=1..A} \frac{YC_O}{\lambda_2^{(l)}} \sqrt{\frac{d' \log(1/\delta)}{N_l}}
$$

$$
||\widehat{f}_R(\cdot|i,l) - f_R(\cdot|i,l)||_1 \leq \mathcal{B}_R := \frac{R C_R}{\lambda_2^{(l)}} \sqrt{\frac{d' \log(1/\delta)}{N_l}}
$$

$$
||\widehat{f}_T(\cdot|\cdot,l) - f_T(\cdot|\cdot,l)||_F \leq \mathcal{B}_T := \max_{l'=1,\dots,A} \frac{C_T d^2 A}{\lambda_2^{(l')}} \sqrt{\frac{d \log(1/\delta)}{N_{l'}}}
$$

with \blacktriangleright d = A · Y · R (can be improved)

\n- \n
$$
\omega_{\min}^{(l)} = \min_{x \in \mathcal{X}} \omega_{\pi}^{(l)}(x)
$$
 (forced by explorative policy and ergodicity)\n
\n- \n $\lambda_2^{(l)} = \min\{(\sigma_{1,3}^{(l)})^{3/2}; (\sigma_{1,3}^{(l)})^3(\omega_{\min}^{(l)})^{1/2}\}\pi_{\min}$ \n
\n

The Spectral-Method UCRL

In short: just UCRL1 with spectral method to estimate the POMDP.

The Spectral-Method UCRL

Theorem

SM-UCRL run over T rounds achieves an ϵ -regret

$$
R_T^{\epsilon} = O\left(\text{poly}(d, d') \frac{\log(T)}{\epsilon^2} \right)
$$

Pros

- \triangleright Extension of spectral methods for LVM to active settings and (relatively...) smooth integration with UCRL
- ► Current version uses UCRL1 but can be extended to UCRL2 $(=R_T=O(\sqrt{T}))$
- \blacktriangleright Dependency on X, Y, R, O can be improved

Pros

- \triangleright Extension of spectral methods for LVM to active settings and (relatively...) smooth integration with UCRL
- ► Current version uses UCRL1 but can be extended to UCRL2 $(=R_T=O(\sqrt{T}))$
- \blacktriangleright Dependency on X, Y, R, O can be improved

Cons

- \blacktriangleright Constants are unknown
- \blacktriangleright Requires persistently explorative policies
- Bad dependency on probability of poorly visited states

Pros

- \triangleright Extension of spectral methods for LVM to active settings and (relatively...) smooth integration with UCRL
- ► Current version uses UCRL1 but can be extended to UCRL2 $(=R_T=O(\sqrt{T}))$
- \blacktriangleright Dependency on X, Y, R, O can be improved

Cons

- \blacktriangleright Constants are unknown
- \blacktriangleright Requires persistently explorative policies
- \triangleright Bad dependency on probability of poorly visited states

Questions

Ingia

- If it possible to use (partially) deterministic policies?
- \blacktriangleright Is it possible to remove ergodicity assumption (on bad policies)?

[Conclusions](#page-71-0)

Outline

[Sequential Transfer in MAB with Finite Set of Models](#page-5-0)

[Learning in Partially Observable MDPs](#page-41-0)

[Conclusions](#page-70-0)

A. LAZARIC – The Hidden World of Bandits November 9, 2015 - 43/45
[Conclusions](#page-72-0)

The Hidden World of Bandits

Many

bandit problems / contexts / observations

> **Few hidden** structures

 \Rightarrow How do we learn *structures and solutions* at the same time?

[Conclusions](#page-73-0)

The Hidden World of Bandits

Many

bandit problems / contexts / observations

> **Few hidden** structures

 \Rightarrow How do we learn structures and solutions at the same time?

 \Rightarrow Spectral tensor decomposition for LVM and *MAB* strategies can be (often) integrated **smoothly and effectively**.

Thank you!

Alessandro Lazaric alessandro.lazaric@inria.fr sequel.lille.inria.fr