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The Hidden World of Bandits

Many
bandit problems /
contexts / observations

Few hidden
structures

= How do we learn structures and solutions at the same time?
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Multi-armed Bandit with Hidden Type
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Learning the hidden type of bandit significantly reduces the regret

[Agrawal et al., IEEE TAC'89] [Azar et al., NIPS'13], [Maillard et al.,
ICML'14] [Lattimore and Munos, NIPS'14]
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Sequential Transfer in MAB with Finite Set of Models

The Setting

v

Set of arms A= {1,...,K}

v

Set of types © = {01,...,0m}

v

Distribution over types p

v

Arm mean p;(6), best arm i.(6), best value p.(0)

v

Arm gap Aj(0) = p.(0) — pi(9)

Model gap I';(6,0") = ui(0) — pi(¢')]

v
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Sequential Transfer in MAB with Finite Set of Models

The Protocol

> for j=1,...,J (episodes)
» Draw task & from p
> for t =1,...,n (steps)
» Learner selects arm / _

> Learner observes X{ ~ v;(¢)
> Learner updates estimates

» endfor

» endfor
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The Protocol

> for j=1,...,J (episodes)
» Draw task & from p
> for t =1,...,n (steps)
» Learner selects arm / _

> Learner observes X{ ~ v;(¢)
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» endfor
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Sequential Transfer in MAB with Finite Set of Models

The Protocol

> for j=1,...,J (episodes)
» Draw task & from p
> for t =1,...,n (steps)
» Learner selects arm / _

> Learner observes X{ ~ v;(¢)
> Learner updates estimates

» endfor

» endfor

> Task regret RE =", @) TL,0:(0)
> Global regret R, = ij:1 RS

= Usually nis small and J is large
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Sequential Transfer in MAB with Finite Set of Models

The Advantage of Knowing ©

Assumption: {p;(0)}; ¢ are known
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Sequential Transfer in MAB with Finite Set of Models

The Advantage of Knowing ©

Assumption: {p;(0)}; ¢ are known

mUCB({pi(6)},6)
> for t =1,..., n (steps)

v

Let €/, = c+/log(t)/ Ti+

v

Build set of active types ©; = {6 : Vi, |1i(0) — Li ] < €i¢}

v

Select 8; = arg maxgeeo, 1+(6)
Pull arm Iy = i.(0:)

v

> Learner observes reward and update estimates

» endfor
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The Advantage of Knowing ©
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Sequential Transfer in MAB with Finite Set of Models

The Advantage of Knowing ©

Given {11i(0)};0, the mUCB achieves a per-task regret with type

2log(K.n%)
min9€@+,i F,-(O, é)

E[R(0)] < 3

i€EAL
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E[R(0)] < 3
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The Advantage of Knowing ©

Given {11i(0)};0, the mUCB achieves a per-task regret with type

2log(K.n%)
min9€@+,i F,-(O, é)

E[R(0)] < 3

i€EAL

» Optimistic types O, (0) = {0 : 11.(0) > u.(9)}
» Optimistic types with optimal arm i, @, ;(0) = {6 € © : i,(0) = i}
> Possible optimal arms A, (©') ={ie A:30 € © :i=i.(0)}
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Sequential Transfer in MAB with Finite Set of Models

The Advantage of Knowing ©

Given {11i(0)};0, the mUCB achieves a per-task regret with type

2log(K.n%)
min9€@+,i F,-(O, é)

E[R(0)] < 3

i€EAL

v

Optimistic types © (A) = {0 : u.(0) > p.(0)}
Optimistic types with optimal arm i, ©, ;(9) = {0 € ©, : i.(0) = i}
Possible optimal arms A, (@) ={ie A:30 € © :i=i.(0)}

v

v

v

Possible optimal arms of optimistic types A, = A.(©,(0))

. brezia~
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Sequential Transfer in MAB with Finite Set of Models

Learning the Hidden Types

Consider the random vector Z € R¥, such that [Z]; is obtained by
sampling 6 from p and and then sampling a reward from v;(0)

» First moment E[Z|0] = u(0) € R¥

> Second moment M, = E[Z; @ Z5]

» Third moment M3 = E[Z; ® Z, ® Z3]

. Crzia—~

A. LAZARIC — The Hidden World of Bandits November 9, 2015 -



Sequential Transfer in MAB with Finite Set of Models

Learning the Hidden Types
Consider the random vector Z € R¥, such that [Z]; is obtained by
sampling 6 from p and and then sampling a reward from v;(0)
» First moment E[Z|0] = u(0) € R¥
> Second moment M, = E[Z; @ Z5]
» Third moment M3 = E[Z; ® Z, ® Z3]

Mo ST p(0)ELZ1160] © E[Zal6] = S p(0)u(6) © p(6)
9co 0o

Ms 37 p(O)EIZ410) 9 E[Z10) B[ Z516] = 3 pl0)1a(6) @ (0)  u(0)

e 0c©
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Sequential Transfer in MAB with Finite Set of Models

Learning the Hidden Types
Consider the random vector Z € R¥, such that [Z]; is obtained by
sampling 6 from p and and then sampling a reward from v;(0)
» First moment E[Z|0] = u(0) € R¥
> Second moment M, = E[Z; @ Z5]
» Third moment M3 = E[Z; ® Z, ® Z3]

Mo ST p(0)ELZ1160] © E[Zal6] = S p(0)u(6) © p(6)
9co 0o

Ms 37 p(O)EIZ410) 9 E[Z10) B[ Z516] = 3 pl0)1a(6) @ (0)  u(0)

e 0c©

= p(0) and p(0) are the result of tensor decomposition of Ms (after
orthogonalization using M,)
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Learning the Hidden Types

Assumption: T,{n > 3 (can be forced by the algorithm)
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Learning the Hidden Types

Assumption: T,{n > 3 (can be forced by the algorithm)

At each episode / split the samples in three (independent) batches

3 T/'/,n/3 3 2Ti’,n/3 3 T’./’"

~| ~| ~1

=7 3 Yie Bli=7- Y Yie Bl=7 X Y.
in =1 P =T /341 =T /341
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Sequential Transfer in MAB with Finite Set of Models

Learning the Hidden Types

Assumption: T,{n > 3 (can be forced by the algorithm)

At each episode / split the samples in three (independent) batches

3 T/'/,n/3 3 2Ti’,n/3 3 T’./’"

~| ~| ~1

=7 3 Yie Bli=7- Y Yie Bl=7 X Y.
in =1 P =T /341 =T /341

Compute estimates
P R / P R / /
Mziy Py ® [y, and M3:j2ﬁ1®l~12®ﬁ3-
=1 I=1

. Crzia—~

A. LAZARIC — The Hidden World of Bandits November 9, 2015



Sequential Transfer in MAB with Finite Set of Models

Learning the Hidden Types

Lemma

I\7Ig and I\Aﬂ3 are unbiased estimators of M, and M3 and*

\|/\/I3—AA43|\§K3/2 /ngﬂ; ||M2_/\A/]2||§K llmg(jﬂ

with high probability w.r.t. tasks and samples randomness.

*Up to constants
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Sequential Transfer in MAB with Finite Set of Models

Learning the Hidden Types

Assumptions

> {u(0)}y are linearly independent (i.e., m < K)
> p(6) >0foralldc®©
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Sequential Transfer in MAB with Finite Set of Models

Learning the Hidden Types

Assumptions

> {u(0)}y are linearly independent (i.e., m < K)
> p(0) >0 forall c©

Theorem

There exists Jo such that for any j > Jy (up to permutation )

1(8) - B (w(0)] < & = C(@)K?5m?, | OB/

J
with
C(e) = C N Umax/03min (Umax/rg 4 1/Umin 4F 1/Umax)

with high probability and independently from the bandit strategy (as
soon as T/, > 3).

. brezia~
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Sequential Transfer in MAB with Finite Set of Models

The Advantage of Learning ©

tucB
> for j=1,...,J (tasks)

> letd =C log(K/d)/j

> for t =1,...,n (steps)
> Let €;; = cy/log(t)/ T+

> Build set of active types @)t ={0: Vi, |0i(0) i <ert+e}
» Compute B;(i; ) = min {(ﬁ,(@) +¢é), (e + Gi,t)}
> Select 0; = arg max, g Max; B:(i; 0)

> Pull arm I, = arg max; B;(i; 0;)

> Learner observes reward and update estimates
» endfor

» endfor

. Cbreia—
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Sequential Transfer in MAB with Finite Set of Models

The Advantage of Learning ©
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Sequential Transfer in MAB with Finite Set of Models

The Advantage of Learning ©

If tUCB is run over J episodes then

J og (Kn? og (Kn? _.
RJSZ(Zmin{2| 8 (Ki/9) log (K1™/9) )2}Ai(9’)

Ai(07)2 72 min F{(Q;@f

e 0<e] (@)
2log (Kn?/9)
L T AG) )
ie A,

where (because of ¢/)
> A{ arms optimal for models that can be discarded

> .Aé arms optimal for models that cannot be discarded

. brezia~
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Sequential Transfer in MAB with Finite Set of Models

The Advantage of Learning ©

K =7, m =5 with small model gaps
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Sequential Transfer in MAB with Finite Set of Models

Summary

Pros
» Smooth integration of LVM with MAB

» Performance is never worse than UCB and it gets better at
each task
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» Constants in € are mostly unknown

» Residual exploration of all arms

A. LAZARIC — The Hidden World of Bandits November 9,



Sequential Transfer in MAB with Finite Set of Models

Summary

Pros
» Smooth integration of LVM with MAB

» Performance is never worse than UCB and it gets better at
each task

Cons
» Constants in € are mostly unknown
» Residual exploration of all arms
Questions

» Is it possible to “accelerate” the model learning by exploring
more at the beginning?

» How do we estimate m?

. Cbreia—

A. LAZARIC — The Hidden World of Bandits November 9, 2|



Learning in Partially Observable MDPs

Outline

Sequential Transfer in MAB with Finite Set of Models

Learning in Partially Observable MDPs

Conclusions
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Learning in Partially Observable MDPs

Partially Observable Markov Decision Process

What time do
you want to
leave?
owant | o
help you? What do you
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-

1 would like to
eat
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-
Where do you
want to go?

| E—

Would you like
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-

Which cinema
do you want to
go?
—
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Learning in Partially Observable MDPs

Partially Observable Markov Decision Process

How can |
help you?

you want
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Learning in Partially Observable MDPs

Partially Observable Markov Decision Process
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Learning in Partially Observable MDPs

Partially Observable Markov Decision Process

IN NEED
OF FOOD
e ———

I'would like to

eat
something.

Learning the observation model allows learning better policies
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Learning in Partially Observable MDPs

The Setting

A finite POMDP M is a tuple (X, A, V, R, f1, fr, fo)
» X is a finite state space with |X| = X
» A is a finite action space with |A| = A

» ) is a finite observation space with |)| =Y

v

R is a finite reward space with |R| = R bounded by riax

v

fr is the transition density fr(x’|x, a)

v

fr is the reward density fg(r|x, a)

v

fo is the observation density fo(y|x)

. brezia~
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Learning in Partially Observable MDPs

The Setting

O8O,
OO,

= unlike the bandit model, here observations, actions, and hidden
variables are very much dependent

. brezia~
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Learning in Partially Observable MDPs

The Setting

Policies
» Deterministic memory-less: bad
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Learning in Partially Observable MDPs

The Setting

Policies
» Deterministic memory-less: bad

» Stochastic memory-less: ok [Barto et al., IEEE-SMC'83], [Loch, Singh,
ICML'98], [Williams, Singh, NIPS'98], [Li et al., EJ of Op. Research'2011]
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Learning in Partially Observable MDPs

The Setting

Policies
» Deterministic memory-less: bad

» Stochastic memory-less: ok [Barto et al., IEEE-SMC'83], [Loch, Singh,
ICML'98], [Williams, Singh, NIPS'98], [Li et al., EJ of Op. Research'2011]

» Deterministic history-based: optimal (requires belief state)
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Learning in Partially Observable MDPs

The Setting

A (stochastic memory-less) policy 7
» is defined by the density f;(aly)

» induces a stationary distribution w,(x)

» has an average reward 1, = > .y W(X)Pr(x)

= Optimal policy 7* = arg max, 1,

= Regret Rt = Tn* — Z;l re

. Crzia—~
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Learning in Partially Observable MDPs

The Setting

Assumptions
1. Set of policies P = {7 : min, min, fr(aly) > min}

2. For any policy 7 € P, the Markov chain fr . (x|x) is ergodic

3. The observation model is not aliased (no two states with same
observations)

4. The transition model is not aliased (no two states with same
transitions)

. Cbreia—
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Learning in Partially Observable MDPs

The Setting

Assumptions
1. Set of policies P = {7 : min, min, fr(aly) > min}

2. For any policy 7 € P, the Markov chain fr . (x|x) is ergodic

3. The observation model is not aliased (no two states with same
observations)

4. The transition model is not aliased (no two states with same
transitions)

Good news: 3 and 4 can be relaxed
Bad news: 1 and 2 cannot be removed (maybe...)

. Cbreia—
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Learning in Partially Observable MDPs

The Multi-View Model
> Fix policy m € P
» For each action /, if a; = [/, construct views:

(1 (1 (1
Vl(} = (at—l,)/t—l, rt—l); V2(72 = ()/t, ft—l); Vl(’,z = (3t+1,)/t+1, ft+1)
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Learning in Partially Observable MDPs

The Multi-View Model
> Fix policy m € P
» For each action /, if a; = [/, construct views:

()

(1 (1
Vit = (at—l,)/t—l, rt—l); VQ(,Z = ()/t, ft—l); Vl(,,z = (3t+1,)/t+1, ft+1)

= \71(2, \72(2, \7§IZ are three independent views of x; (ie, conditioned on x;

they are independent random variables)

. Cbreia—
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Learning in Partially Observable MDPs

The Multi-View Model

Construct matrices

MO — E[) o ']

M —E[Ve i s i

. brezia~
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Learning in Partially Observable MDPs

The Multi-View Model

Construct matrices

M9 = o) & 4]
M9 = E[#e e 4]

=> M3 is neither symmetric nor orthogonal!

. brezia~
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Learning in Partially Observable MDPs

The Multi-View Model

Construct matrices

M0 = B[ & o))
M0 = B[00 e ]
=> M3 is neither symmetric nor orthogonal!

= skipping details on how to symmetrize and orthogonalize (hint:
transform the views and use M>)

. Crzia—~
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Learning in Partially Observable MDPs

Recovering the POMDP parameters

v

Given one single trajectory of T steps

v

Use empirical estimates of Mél) and I\/Igl) for each action

v

Symmetrize and orthogonalize the tensor

v

Estimate the model of the views

(1 (1 =(/
Vl(g = (at—la)/t—la ft—l); Vz(z = (yh ft—l); Vl(z = (3t+17)/t+17 ft+1)

From estimated views reconstruct the densities ?o, fr, and fg (this
step is non-trivial)

v

. Crzia—~
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Learning in Partially Observable MDPs

Recovering the POMDP parameters

For any state i and action I, with prob. 1 — ¢

PO ) . YCo [d'log(1/0
o) ~fo( )] < Bo:= min 5 el

o ] RCr [d'log(1/d
I~ Dl < B = Sy [ SR

- - Crd?A [dlog(1/5)
HfT(l’/)_fT(|7l)||F SBT—//:nI’aXA )\g/) N,
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Learning in Partially Observable MDPs

Recovering the POMDP parameters

For any state i and action I, with prob. 1 — ¢

- YCo |d’'log(1/0)
[fo(:|1)—fo(-1)|l1 < Bo:= ”}”A/\g) N,

o ] RCr [d'log(1/d
I~ Dl < B = Sy [ SR

- Crd?A [dlog(1/6)
. <Br:=
Vfr (L = frCl e <Br:= max @ N,
with

> d=A-Y R (can be improved)

D — minger wl ( ) (forced by explorative policy and ergodicity)

min

> AY = min{(a{4)3/2; ()3 (W)Y i

> w

.
lrzia—
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Learning in Partially Observable MDPs

The Spectral-Method UCRL

Initialize t = 1, initial state x;
> for k=1,...,K (episodes)
> Set t() =¢ R
» Compute the estimated POMDP M using the spectral algorithm
» Compute the optimistic policy 7(K)
» while (¢t — t() < 2(¢(k) — (k1))
> Execute a; ~ fz0 (| xt)
» Obtain reward r;, observe next state x;, and set t =t +1
» endwhile
» endfor

In short: just UCRL1 with spectral method to estimate the POMDP.
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Learning in Partially Observable MDPs

The Spectral-Method UCRL

SM-UCRL run over T rounds achieves an e-regret

Iog(T))

€2

Ry =0 <po/y(d, d")
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Learning in Partially Observable MDPs

Summary
Pros
» Extension of spectral methods for LVM to active settings and
(relatively...) smooth integration with UCRL
» Current version uses UCRL1 but can be extended to UCRL2
(=RT = O(VT))
» Dependency on X, Y, R, O can be improved

-
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Learning in Partially Observable MDPs

Summary
Pros

» Extension of spectral methods for LVM to active settings and
(relatively...) smooth integration with UCRL

» Current version uses UCRL1 but can be extended to UCRL2
(=Rr = O(V'T))
» Dependency on X, Y, R, O can be improved
Cons
» Constants are unknown
» Requires persistently explorative policies
» Bad dependency on probability of poorly visited states
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Learning in Partially Observable MDPs

Summary
Pros

» Extension of spectral methods for LVM to active settings and
(relatively...) smooth integration with UCRL

» Current version uses UCRL1 but can be extended to UCRL2
(=Rr = O(V'T))

» Dependency on X, Y, R, O can be improved
Cons

» Constants are unknown

» Requires persistently explorative policies

» Bad dependency on probability of poorly visited states
Questions

> Is it possible to use (partially) deterministic policies?

» Is it possible to remove ergodicity assumption (on bad
) policies)?
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Conclusions

Outline

Sequential Transfer in MAB with Finite Set of Models

Learning in Partially Observable MDPs
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Conclusions

The Hidden World of Bandits

Many
bandit problems /
contexts / observations

Few hidden
structures

= How do we learn structures and solutions at the same time?
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Conclusions

The Hidden World of Bandits

Many
bandit problems /
contexts / observations

Few hidden
structures

= How do we learn structures and solutions at the same time?

= Spectral tensor decomposition for LVM and MAB strategies can be
(often) integrated smoothly and effectively.
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Thank you!

Alessandro Lazaric

alessandro.lazaric@inria.fr

sequel.lille.inria.fr
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