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Consider the polynomial optimization problem:

P : f ∗ = min{ f (x) : gj(x) ≥ 0, j = 1, . . . ,m }

for some polynomials f , gj ∈ R[x].

Why Polynomial Optimization?
After all ... P is just a particular case of Non Linear

Programming (NLP)!

Jean B. Lasserre semidefinite characterization



Consider the polynomial optimization problem:

P : f ∗ = min{ f (x) : gj(x) ≥ 0, j = 1, . . . ,m }

for some polynomials f , gj ∈ R[x].

Why Polynomial Optimization?
After all ... P is just a particular case of Non Linear

Programming (NLP)!

Jean B. Lasserre semidefinite characterization



True!
... if one is interested with a LOCAL optimum only!!

When searching for a local minimum ...

Optimality conditions and descent algorithms use basic tools
from REAL and CONVEX analysis and linear algebra

The focus is on how to improve f by looking at a
NEIGHBORHOOD of a nominal point x ∈ K, i.e., LOCALLY

AROUND x ∈ K, and in general,
no GLOBAL property of x ∈ K can be inferred.

The fact that f and gj are POLYNOMIALS does not help much!
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BUT for GLOBAL Optimization
... the picture is different!

Remember that for the GLOBAL minimum f ∗:

f ∗ = sup {λ : f (x)− λ ≥ 0 ∀x ∈ K}.

(Not true for a global minimum!))

and so to compute f ∗ ...
one needs to handle EFFICIENTLY the difficult constraint

f (x)− λ ≥ 0 ∀x ∈ K,

i.e. one needs
TRACTABLE CERTIFICATES of POSITIVITY on K

for the polynomial x 7→ f (x)− λ!
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REAL ALGEBRAIC GEOMETRY helps!!!!

Indeed, POWERFUL CERTIFICATES OF POSITIVITY EXIST!

Moreover .... and importantly,

Such certificates are amenable to PRACTICAL COMPUTATION!

(? Stronger Positivstellensatzë exist for analytic functions but
are useless from a computational viewpoint.)
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SOS-based certificate

K = {x : gj(x) ≥ 0, j = 1, . . . ,m }

Theorem (Putinar’s Positivstellensatz)
If K is compact (+ a technical Archimedean assumption) and
f > 0 on K then:

† f (x) = σ0(x) +
m∑

j=1

σj(x) gj(x), ∀x ∈ Rn,

for some SOS polynomials (σj) ⊂ R[x].
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However ... In Putinar’s theorem
... nothing is said on the DEGREE of the SOS polynomials (σj)!

BUT ... GOOD news ..!!

Testing whether † holds
for some SOS (σj) ⊂ R[x] with a degree bound,

is SOLVING an SDP!
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Semidefinite Programming

The CONVEX optimization problem:

P → min
x ∈Rn

{ c′ x |
n∑

i=1

Ai xi � b},

where c ∈ Rn and b,Ai ∈ Sm (m ×m symmetric matrices), is
called a semidefinite program.

The notation “· � 0" means the real symmetric matrix “·" is
positive semidefinite, i.e., all its (real) EIGENVALUES are
nonnegative.
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Example

P : min
x
{x1 + x2 :

s.t.
[

3 + 2x1 + x2 x1 − 5
x1 − 5 x1 − 2x2

]
� 0

}
,

or, equivalently

P : min
x
{x1 + x2 :

s.t.
[

3 −5
−5 0

]
+ x1

[
2 1
1 1

]
+ x2

[
1 0
0 −2

]
� 0

}
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P and its dual P∗ are convex problems that are solvable in
polynomial time to arbitrary precision ε > 0.
= generalization to the convex cone S+m (X � 0) of Linear
Programming on the convex polyhedral cone Rm

+ (x ≥ 0).

Indeed, with DIAGONAL matrices
Semidefinite programming = Linear Programming!

Several academic SDP software packages exist, (e.g. MATLAB
“LMI toolbox”, SeduMi, SDPT3, ...). However, so far, size
limitation is more severe than for LP software packages.
Pioneer contributions by A. Nemirovsky, Y. Nesterov, N.Z. Shor,
B.D. Yudin,...
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Dual side of Putinar’s theorem: The K -moment
problem

Given a real sequence y = (yα), α ∈ Nn, does there exist a
Borel measure µ on K such that

† yα =

∫
K

xα1
1 · · · x

αn
n dµ, ∀α ∈ Nn.

Introduce the so-called Riesz linear functional Ly : R[x]→ R :

f

(
=
∑
α

fα xα
)
7→ Ly(f ) =

∑
α∈Nn

fα yα
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Theorem
If K = {x : gj(x) ≥ 0, j = 1, . . . ,m} is compact and satisfies an
Archimedean assumption then † holds if and only if for every
h ∈ R[x]2:

(?) Ly (h2) ≥ 0; Ly (h2 gj) ≥ 0, j = 1, . . . ,m.

The condition (?) is equivalent to m + 1 positive
semidefiniteness of some moment and localizing matrices, i.e.,

M(y) � 0; M(gj y) � 0, j = 1, . . . ,m.

whose rows & columns are indexed by Nn, and entries are
LINEAR in the yα’s
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LP-based certificate

K = {x : gj(x) ≥ 0; (1− gj(x)) ≥ 0, j = 1, . . . ,m}

Theorem (Krivine-Vasilescu-Handelman’s Positivstellensatz)

Let K be compact and the family {1,gj} generate R[x]. If f > 0
on K then:

(?) f (x) =
∑
α,β

cαβ
m∏

j=1

gj(x)αj (1− gj(x))βj , , ∀x ∈ Rn,

for some NONNEGATIVE scalars (cαβ).

Jean B. Lasserre semidefinite characterization



However ... Again in Krivine’s theorem

In (?) ... nothing is said on
how many nonnegative scalars cαβ are needed!

BUT ... GOOD news ... again!!

Testing whether (?) holds
for some nonnegative scalars (cαβ)

is SOLVING an LP!
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Dual side of Krivine’s theorem: The K -moment
problem

Theorem
If K = {x : gj(x) ≥ 0, j = 1, . . . ,m} is compact, 0 ≤ gj ≤ 1 on K,
and {1,gj} generates R[x], then † holds if and only if

(??) Ly

 m∏
j=1

gj
αj (1− gj

βj

 ≥ 0, ∀α, β ∈ Nm.

The condition (??) is equivalent to countably many LINEAR
INEQUALITIES on the yα’s
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HENCE ... SUCH POSITIVITY CERTIFICATES

allow to infer GLOBAL Properties of

FEASIBILITY and OPTIMALITY,

... the analogue of (well-known) previous ones

valid in the CONVEX CASE ONLY!
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• In addition, polynomials NONNEGATIVE ON A SET K ⊂ Rn

are ubiquitous. They also appear in many important
applications (outside optimization),

. . . modeled as
particular instances of the so called

Generalized Moment Problem, among which:
Probability, Optimal and Robust Control, Game theory, Signal

processing, multivariate integration, etc.

(GMP) : inf
µi∈M(Ki )

{
s∑

i=1

∫
Ki

fi dµi :
s∑

i=1

∫
Ki

hij dµi
≥
= bj , j ∈ J}

with M(Ki) space of Borel measures on Ki ⊂ Rni , i = 1, . . . , s.
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The DUAL of the GMP is the linear program GMP∗:

sup
λj

{
s∑

j∈J

λj bj : fi −
∑
j∈J

λj hij ≥ 0 on Ki , i = 1, . . . , s }

And one can see that ...
the constraints of GMP∗ state that

some functions fi −
∑

j∈J λj hij

must be nonnegative on a certain set Ki , i = 1, . . . , s.
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A couple of examples

I: Global OPTIM → f ∗ = inf
x
{ f (x) : x ∈ K }

is the SIMPLEST example of the GMP

because ...

f ∗ = inf
µ∈M(K)

{
∫

K
f dµ :

∫
K

1 dµ = 1}

• Indeed if f (x) ≥ f ∗ for all x ∈ K and µ is a probability measure
on K, then

∫
K f dµ ≥

∫
f ∗ dµ = f ∗.

• On the other hand, for every x ∈ K the probability measure
µ := δx is such that

∫
f dµ = f (x).
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II. Let K ⊂ Rn and S ⊂ K be given, and let Γ ⊂ Nn be also
given.

BOUNDS on measures with moment conditions

max
µ∈M(K)

{ 〈1S, µ〉 :

∫
K

xα dµ = mα, α ∈ Γ }

to compute an upper bound on µ(S) over all distributions
µ ∈ M(K) with a certain fixed number of moments mα.

• If Γ = Nn then one may use this to compute the Lebesgue
volume of a compact basic semi-algebraic set
S ⊂ K := [−1,1]n.

Take mα :=

∫
[−1,1]n

xα dx, α ∈ Nn.
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III. For instance, one may also want:
• To approximate sets defined with QUANTIFIERS, like .e.g.,

Rf := {x ∈ B : f (x , y) ≤ 0 for all y such that (x , y) ∈ K}

Df := {x ∈ B : f (x , y) ≤ 0 for some y such that (x , y) ∈ K}

where f ∈ R[x , y ], B is a simple set (box, ellipsoid).

• To compute convex polynomial underestimators p ≤ f of a
polynomial f on a box B ⊂ Rn. (Very useful in MINLP.)
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The moment-LP and moment-SOS approaches
consist of using a certain type of positivity certificate
(Krivine-Vasilescu-Handelman’s or Putinar’s certificate) in
potentially any application where such a characterization is
needed. (Global optimization is only one example.)

In many situations this amounts to
solving a HIERARCHY of :

LINEAR PROGRAMS, or
SEMIDEFINITE PROGRAMS

... of increasing size!.
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LP- and SDP-hierarchies for optimization

Replace f ∗ = supλ,σj
{λ : f (x)− λ ≥ 0 ∀x ∈ K} with:

The SDP-hierarchy indexed by d ∈ N:

f ∗d = sup {λ : f − λ = σ0︸︷︷︸
SOS

+
m∑

j=1

σj︸︷︷︸
SOS

gj ; deg (σj gj) ≤ 2d }

or, the LP-hierarchy indexed by d ∈ N:

θd = sup {λ : f −λ =
∑
α,β

cαβ︸︷︷︸
≥0

m∏
j=1

gj
αj (1−gj)

βj ; |α+β| ≤ 2d}
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Theorem
Both sequence (f ∗d ), and (θd ), d ∈ N, are MONOTONE NON
DECREASING and when K is compact (and satisfies a
technical Archimedean assumption) then:

f ∗ = lim
d→∞

f ∗d = lim
d→∞

θd .
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•What makes this approach exciting is that it is at the
crossroads of several disciplines/applications:

Commutative, Non-commutative, and Non-linear
ALGEBRA
Real algebraic geometry, and Functional Analysis
Optimization, Convex Analysis
Computational Complexity in Computer Science,

which BENEFIT from interactions!

• As mentioned ... potential applications are ENDLESS!
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• Has already been proved useful and successful in
applications with modest problem size, notably in optimization,
control, robust control, optimal control, estimation, computer
vision, etc. (If sparsity then problems of larger size can be
addressed)

• HAS initiated and stimulated new research issues:
in Convex Algebraic Geometry (e.g. semidefinite
representation of convex sets, algebraic degree of
semidefinite programming and polynomial optimization)
in Computational algebra (e.g., for solving polynomial
equations via SDP and Border bases)
Computational Complexity where LP- and
SDP-HIERARCHIES have become an important tool to
analyze Hardness of Approximation for 0/1 combinatorial
problems (→ links with quantum computing)
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equations via SDP and Border bases)
Computational Complexity where LP- and
SDP-HIERARCHIES have become an important tool to
analyze Hardness of Approximation for 0/1 combinatorial
problems (→ links with quantum computing)
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Recall that both LP- and SDP- hierarchies are
GENERAL PURPOSE METHODS ....

NOT TAILORED to solving specific hard problems!!
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A remarkable property of the SOS hierarchy: I

When solving the optimization problem

P : f ∗ = min {f (x) : gj(x) ≥ 0, j = 1, . . . ,m}

one does NOT distinguish between CONVEX, CONTINUOUS
NON CONVEX, and 0/1 (and DISCRETE) problems! A boolean
variable xi is modelled via the equality constraint “x2

i − xi = 0".

In Non Linear Programming (NLP),

modeling a 0/1 variable with the polynomial equality constraint
“x2

i − xi = 0"
and applying a standard descent algorithm would be

considered “stupid"!

Each class of problems has its own ad hoc tailored algorithms.
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Even though the moment-SOS approach DOES NOT
SPECIALIZE to each class of problems:

It recognizes the class of (easy) SOS-convex problems as
FINITE CONVERGENCE occurs at the FIRST relaxation in
the hierarchy.
Finite convergence also occurs for general convex
problems and generically for non convex problems
→ (NOT true for the LP-hierarchy.)
The SOS-hierarchy dominates other lift-and-project
hierarchies (i.e. provides the best lower bounds) for hard
0/1 combinatorial optimization problems! The Computer
Science community talks about a META-Algorithm.
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A remarkable property: II

FINITE CONVERGENCE of the SOS-hierarchy is GENERIC!

... and provides a GLOBAL OPTIMALITY CERTIFICATE,

the analogue for the NON CONVEX CASE of the

KKT-OPTIMALITY conditions in the CONVEX CASE!
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Theorem (Marshall, Nie)
Let x∗ ∈ K be a global minimizer of

P : f ∗ = min {f (x) : gj(x) ≥ 0, j = 1, . . . ,m}.

and assume that:
(i) The gradients {∇gj(x∗)} are linearly independent,
(ii) Strict complementarity holds (λ∗j gj(x∗) = 0 for all j .)
(iii) Second-order sufficiency conditions hold at

(x∗, λ∗) ∈ K× Rm
+.

Then f (x)− f ∗ = σ∗0(x) +
m∑

j=1

σ∗j (x)gj(x), ∀x ∈ Rn, for some

SOS polynomials {σ∗j }.

Moreover, the conditions (i)-(ii)-(iii) HOLD GENERICALLY!
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Certificates of positivity already exist in convex optimization

f ∗ = f (x∗) = min { f (x) : gj(x) ≥ 0, j = 1, . . . ,m }

when f and −gj are CONVEX. Indeed if Slater’s condition holds
there exist nonnegative KKT-multipliers λ∗j ∈ Rm

+ such that:

∇f (x∗)−
m∑

j=1

λj
∗ gj(x∗) = 0; λj

∗ gj(x∗) = 0, j = 1, . . . ,m.

... and so ... the Lagrangian

Lλ∗(x) := f (x)− f ∗ −
∑
j=1

λj
∗ gj(x),

satisfies
Lλ∗(x∗) = 0 and Lλ∗(x) ≥ 0 for all x. Therefore:

Lλ∗(x) ≥ 0⇒ f (x) ≥ f ∗ ∀x ∈ K!
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In summary:

KKT-OPTIMALITY PUTINAR’s CERTIFICATE
when f and −gj are CONVEX in the non CONVEX CASE

∇f (x∗)−
m∑

j=1

λ∗j ∇gj(x∗) = 0 ∇f (x∗)−
m∑

j=1

σj(x∗)∇gj(x∗) = 0

f (x)− f ∗ −
m∑

j=1

λ∗j gj(x) f (x)− f ∗ −
m∑

j=1

σ∗j (x)gj(x)

≥ 0 for all x ∈ Rn (= σ∗0(x)) ≥ 0 for all x ∈ Rn.

for some SOS {σ∗j }, and
σ∗j (x∗) = λ∗j .
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II. Approximation of sets with quantifiers

Let f ∈ R[x , y ] and let K ⊂ Rn × Rp be the semi-algebraic set:

K := {(x , y) : gj(x , y) ≥ 0, j = 1, . . . ,m},

and let B ⊂ Rn be the unit ball or the box [−1,1]n.

Suppose that one wants to approximate the set:

Rf := {x ∈ B : f (x , y) ≤ 0 for all y such that (x , y) ∈ K}

as closely as desired by a sequence of sets of the form:

Θk := {x ∈ B : Jk (x) ≤ 0 }

for some polynomials Jk .
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With g0 = 1 and with K ⊂ Rn × Rp and k ∈ N, let

Qk (g) :=


m∑

j=0

σj(x , y) gj(x , y) : σj ∈ Σ[x , y ], degσj gj ≤ 2k


Let x 7→ F (x) := max {f (x , y) : (x , y) ∈ K }, and

for every integer k consider the optimization problem:

ρk = min
J∈R[x ]k

{∫
B

(J − F ) dx : J(x)− f (x , y) ∈ Qk (g)

}
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1. The criterion∫
B

(J−F ) dx =

∫
B
−F dx︸ ︷︷ ︸

unknown but constant

+
∑
α

Jα
∫

B
xα dx︸ ︷︷ ︸

easy to compute

is LINEAR in the coefficients Jα of the unknown polynomial
J ∈ R[x]k !

2. The constraint

J(x)− f (x , y) =
m∑

j=0

σj(x , y) gj(x , y)

is just LINEAR CONSTRAINTS + LMIs!
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Hence, the optimization problem

ρk = min
J∈R[x ]k

{∫
B

(J − F ) dx : J(x)− f (x, y) ∈ Qk (g)

}
IS AN SDP! Moreover, it has an optimal solution J∗k ∈ R[x ]k !

• Alternatively, if one uses LP-based positivity certificates for
J(x)− f (x, y), one ends up with solving an LP!

From the definition of J∗k , the sublevel sets

Θk := {x ∈ B : J∗k (x) ≤ 0} ⊂ Rf , k ∈ N,

provide a nested sequence of INNNER approximations of Rf .
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Theorem (Lass)

(Strong) convergence in L1(B)-norm takes place, that is:

lim
k→∞

∫
B
| J∗k − F |dx = 0

and, if in addition the set {x ∈ B : F (x) = 0} has Lebesgue
measure zero, then

lim
k→∞

VOL(Rf \Θk ) = 0
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Ex: Polynomial Matrix Inequalities: (with D. Henrion)

Let x 7→ A(x) ∈ Rp×p where A(x) is the matrix-polynomial

x 7→ A(x) =
∑
α∈Nn

Aα xα
(

=
∑
α∈Nn

Aα xα1
1 · · · x

αn
n

)
.

for finitely many real symmetric matrices (Aα), α ∈ Nn.

... and suppose one wants to approximate the set

RA := {x ∈ B : A(x) � 0} = {x : λmin(A(x)) ≥ 0}.

Then:

RA =

x ∈ B : yT A(x)y︸ ︷︷ ︸
f (x ,y)

≥ 0, ∀ y s.t. ‖y‖2 = 1


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Illustrative example (continued)

Let B be the unit disk {x : ‖x‖ ≤ 1} and let:

RA :=

{
x ∈ B : A(x)

(
=

[
1− 16x1x2 x1

x1 1− x2
1 − x2

2

])
� 0

}

Then by solving relatively simple semidefinite programs, one
may approximate RA with sublevel sets of the form:

Θk := {x ∈ B : J∗k (x) ≥ 0 }

for some polynomial J∗k of degree k = 2,4, . . . and with

VOL (RA \ Θk ) → 0 as k →∞.

Jean B. Lasserre semidefinite characterization



Illustrative example (continued)

Let B be the unit disk {x : ‖x‖ ≤ 1} and let:

RA :=

{
x ∈ B : A(x)

(
=

[
1− 16x1x2 x1

x1 1− x2
1 − x2

2

])
� 0

}

Then by solving relatively simple semidefinite programs, one
may approximate RA with sublevel sets of the form:

Θk := {x ∈ B : J∗k (x) ≥ 0 }

for some polynomial J∗k of degree k = 2,4, . . . and with

VOL (RA \ Θk ) → 0 as k →∞.

Jean B. Lasserre semidefinite characterization



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

Θ2 (left) and Θ4 (right) inner approximations (light gray) of (dark
gray) embedded in unit disk B (dashed).

Jean B. Lasserre semidefinite characterization



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

Θ6 (left) and Θ8 (right) inner approximations (light gray) of (dark
gray) embedded in unit disk B (dashed).

Jean B. Lasserre semidefinite characterization



III. Convex underestimators of polynomials

In large scale Mixed Integer Nonlinear Programming (MINLP),
a popular method is to use B & B where LOWER BOUNDS at
each node of the search tree must be computed EFFICIENTLY!

In such a case ... one needs

CONVEX UNDERESTIMATORS

of the objective function, say on a BOX B ⊂ Rn!

Message:

“Good" CONVEX POLYNOMIAL UNDERESTIMATORS can be
computed efficienty!
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Solving

inf
p∈R[x ]d

{∫
B

(f (x)− p(x)) dx :

s.t. f − p≥ 0 on B and p convex on B}

will provide a degree-d POLYNOMIAL CONVEX
UNDERESTIMATOR p∗ of f on B that minimizes the

L1(B)-norm ‖f − p‖1 !

Notice that:

•
∫

B
(f (x)− p(x)) dx is LINEAR in the coefficients of p!

• p convex on B⇔ yT∇2p(x) y︸ ︷︷ ︸
∈R[xy]d

≥ 0 on B× {y : ‖y‖2 = 1}!
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Hence replace the positivity and convexity constraints

f − p≥ 0 on B and p convex on B

with the positivity certificates

f (x)− p(x) =
m∑

k=0

σj(x)︸ ︷︷ ︸
SOS

gj(x)

yT∇2p(x) y =
m∑

k=0

ψ(x , y)︸ ︷︷ ︸
SOS

gj(x) + ψm+1(x , y) (1− ‖y‖2)
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and apply the moment-SOS approach

to obtain a sequence of polynomials p∗k ∈ R[x ]d , k ∈ N, of
degree d which converges to the BEST convex polynomial

underestimator of degree d .
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Conclusion

The moment-SOS hierarchy is a powerful general
methodology.
Works for problems of modest size (or larger size problems
with sparsity and/or symmetries)
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An alternative for larger size problems ?

Mixed LP-SOS positivity certificate

f (x) =
∑
α,β

cαβ︸︷︷︸
≥0

∏
j

gj(x)αj
∏

j

(1− gj(x))βj + σ0(x)︸ ︷︷ ︸
SOS of degree k

where k IS FIXED!

→ A bounded degree SOS hierarchy for polynomial
optimization, Eur. J. Comput. Optimization, with K. Toh & S.
Yang
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THANK YOU!!
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