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Research Interests
I quantifying uncertainty using imprecise probability

lower/upper previsions, robust Bayesian methods
I mathematical methods for imprecise probability

non-linear functionals, convex analysis
I decision making

methods, algorithms, graphical models, dynamic programming,
consistency

I applications of any of the above

[9] [2]
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Research Interests: Uncertainty
how to provide reassurance
that your mathematical models apply to the real world?

Statistics
provides tools for checking this systematically
aim: reasonable reassurance—guarantees are impossible

Imprecise Probability
for the bits that are really hard to quantify
partial expert opinion, sparse data

statisticaldeterministic
sensitivity
analysis

imprecise
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The Uncertainty Zoo (term coined by John Aldridge)

probability bounding

possibility measure

ε-contamination

NPI

robust Bayesian

deterministic

bounding probability

fuzzy

info-gap

interval arithmetic frequentist

Bayesian

Dempster-Shafer

random set

p-box

interval expectation

set of probability measures
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Requirements for an Uncertainty Model

Operational
How can uncertainty be reliably
I measured?
I communicated?

Inference
How can we use our theory of uncertainty for
I statistical reasoning?
I decision making?
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Probability: Interpretations

Interpretation: Trivial Cases
P(A) = 0 ⇐⇒ A is false
P(A) = 1 ⇐⇒ A is true

what about values between 0 and 1, such as P(A) = 0.2?

Interpretation: General Case

I it’s a relative frequency (‘objective probability’, ‘chance’)
I it’s a betting rate (‘subjective probability’)
I it’s something else

Key Problem

I getting probabilities needs plenty of data (or plenty of elicitation)
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Aim

do statistics with partial elicitation and/or sparse data

many answers:
I strong model assumptions
I likelihood (frequentists)
I prior + likelihood (Bayesians/Laplacians)
I expectation + covariance (Bayes-linear-ists)
I non-parametric (Wilcoxon, NPI)
I interval probabilities (Booleans)
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Imprecise Probability: Sensitivity Interpretation

Definition
A credal setM
is a set of probability measures.

Sensitivity Interpretation of P
One of the probability measures P in the credal setM is correct,
but we do not know which one.

For instance, we may be able to exclude some distributions based on the
data, but we do not have enough information to exclude all but one.

crucial: no distribution overM assumed!
(why not?)
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Imprecise Probability:
Summary of Main Issues

I How to do statistics with partial elicitation and sparse data?
I Use of lower and upper probability appears, at least naively,

to be a simple way of dealing with sparse data in principle.
I How do you actually get the lower and upper bounds

‘just from’ data?
I How can we use these models in decision making?
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Power System Adequacy
What & Why?

I energy shortage = total generation < total demand
I statistical quantification of possible future energy shortages?
I useful for long term power system planning
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Power System Adequacy

How

I Build models for different types of generation capacity and demand.
I Fit parameters to data.
I Simulate future scenarios.
I Summarize via any suitable adequacy risk index

(total energy not served, frequency and duration of outages, . . . )

Difficulties

I Requires full time-series model of capacity and demand.
I Quantify future capacity (substantial increase in renewables).
I Limited data to validate all model assumptions.
I Utility function for power loss?
I Contribution of storage?

15



Wind Power Modelling
I Data from “Adjusted Gone Green” scenario supplied by National Grid

(representative of UK but not the actual observations)
I UK total wind power data for 7 winters; each winter is 20 weeks.
I Classical approach: ARMA. Issue: marginal not normal. [7, 8] (Why?)

logit(x) = log
(

t(x)
1−t(x)

)
where t(x) = x−α

β−α . (1)

[α, β] fitted by trial and error
16



Wind Power Modelling
logit(wind power) = winter mean + zero-mean ARMA process

years are not exchangeable!!!
I mean varies across years, may or may not be normal (why?)

y 2005 2006 2007 2008 2009 2010 2011
ˆmean −0.62 0.22 0.03 −0.56 −0.66 −0.84 −0.17

error ±0.33 ±0.56 ±0.42 ±0.38 ±0.45 ±0.32 ±0.61
I ARMA parameters vary across years, normality fairly good

y α̂1(y) α̂2(y) α̂3(y) α̂4(y) α̂5(y) σ̂(y)
2005 2.54 −2.54 1.48 −0.64 0.16 0.04
2006 2.56 −2.65 1.63 −0.7 0.16 0.06
2007 2.49 −2.45 1.38 −0.55 0.12 0.06
2008 2.41 −2.25 1.17 −0.44 0.09 0.06
2009 2.56 −2.58 1.46 −0.58 0.14 0.04
2010 2.53 −2.51 1.39 −0.54 0.12 0.04
2011 2.22 −1.73 0.68 −0.27 0.09 0.06

we use sensitivity analysis (imprecise probability [12, 9])
to deal with lack of exchangeability 17



Conventional Generation Modelling
Assumptions

I Each unit Wi follows a 2 state discrete time Markov chain.

1 0

pi

1 − pi

qi

1 − qi

I Units are independent.

X(t) =
∑k

i=1 ciWi(t). (2)

Issues

I Assumptions clearly violated in practice! Not addressed yet.
I Parameter estimation?

Capacities and availabilities from National Grid.
Remaining parameters naively fitted from literature [1].

I Simulation of 300 independent Markov chains is very slow. 18



Demand Modelling

Methodology

I Complicated!! (daily cycle, weekly cycle, yearly cycle, holidays. . . ) [4]
I Simple approach to condition on an actual demand trace: hindcasting
I Adjust for future demand by multiplicative scaling.

‘average cold spell peak’

Issues

I How to justify exact scaling values?
I Scaling provides only one handle

to control mean, variance, and epistemic uncertainty about these.
I Future demand traces may look very different from any observed year.
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Simulation Results

Two risk indices considered:
I energy not served E = area under curve above horizontal axis
I number of shortfalls N = number of such areas

20



Simulation Results: 100 000 Generated Winter Traces
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Simulation Results: Expected Energy Not Served

P(E) =
7

min
y=1

1
n

n∑
i=1

3360∑
t=1

max
{
0, d(t) − ci(t) − wyi(t)

}
= 299.63 ± 9.24 (3)

P(E) =
7

max
y=1

1
n

n∑
i=1

3360∑
t=1

max
{
0, d(t) − ci(t) − wyi(t)

}
= 389.91 ± 9.24 (4)

P(E = 0) = 0.813±0.002 (5)

P(E = 0) = 0.848±0.002 (6)

For comparison, the naive model has:

P(E) = 808.416±16.501 P(E = 0) = 0.733±0.003 (7)
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Discussion

I Power modelling presents a wonderful statistical challenge.
I Statistical assumptions are important.

Naive model overestimates risk by a factor of more than 2.

I Imprecision can handle, to some extent, loss of exchangeability.
No theory yet to back this up.

I Do engineers believe too much in their models?
I Utility model for energy shortages? Whose risk?
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Land Use Modelling & Crop Rotation
joint work with Lewis Paton & Andy Hart & Nigel Boatman & Mohammud Hussein [10, 6]

I aim: model and predict agricultural land use
I why? food security, landscape, environmental impact

Problems
an abundance of uncertain factors influencing crop choices

Factors Influencing Crop Choice in a Particular Field

I soil type
I previous years’ crops
I intensity & time of rainfall
I temperature
I crop price
I fertilizer price
I farmer’s attitude towards risk
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The Model

I crop sequences typically follow set patterns
year 1 year 2 year 3 year 4

field 1 wheat fallow wheat beans
field 2 barley barley sugar beet wheat
field 3 grass grass wheat grass

I patterns not entirey deterministic: we use a Markov chain
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Land Use Model (Simplified)
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Data

I historical crop data
I historical rainfall data (needs spatial interpolation)
I historical fertiliser price data
I soil type map
I expert information on historic crop profit predicitions
I expert information on yield level per crop and soil type
I predictions of future price and climate scenarios
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Robust Bayesian Analysis

I key idea: probabilities are a logistic function of a linear combination of
the continuous factors (climate and price) influencing crop choices

p(wheat | barley) = function of β0 + β1 × price + β2 × climate

I aim of statistical inference: identify β0, β1, and β2 from data
I only limited prior information about β’s:

sensitivity analysis over a near-vacuous class of priors
MAP estimation because Monte Carlo simulation is too expensive
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Robust Bayesian Analysis:
Transition Probabilities from barley

30



Robust Bayesian Analysis:
Future Crops under Different Scenarios
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Robust Bayesian Analysis: Policy Decision Support

I interested in stimulating increase in legumes
I utility function:

U(a, b) = a − κb

a = fraction of legumes across all farms;
function of b and model parameters β

b = subsidy level
κ = weight constant

I maximize expected utility by considering all β∗ MAP estimates:{
arg max

b
U(a(b , β∗), b) : β∗ ∈ B∗

}
range of optimal policy recommendations

in most cases, actually a unique policy identified
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Conclusion

Is imprecise probability useful?
Should we combine bounding and probability
when data is sparse and expert information is limited?
I Increased ‘confidence’ in analysis.
I Harder to communicate uncertainty?
I Harder to compute.
I Relatively immature theory: fewer off the shelf results.
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Thank you!
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