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Motivations

Probability and density estimation widely used in machine learning.

Limitations : parameters of the distributions are estimated from
limited samples of data.

More data → more complex models

Model selection : best trade-off between accuracy and epistemic
uncertainty

Idea : use ability of possibility theory to represent epistemic
uncertainty
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Possibility theory : discrete case

Possibility distribution π is a mapping from Ω to [0, 1]

Possibility measure :∀A ⊆ Ω,Π(A) = supx∈A π(x)

Π(A ∪ B) = max(Π(A),Π(B))
Π(A ∩ B) ≤ min(Π(A),Π(B))

Necessity measure :∀A ⊆ Ω,N(A) = 1− Π(A).

States of knowledge :

complete knowledge: ∃x ∈ Ω such as π(x) = 1 and
∀y ∈ Ω, y 6= x , π(y) = 0
total ignorance: ∀x ∈ Ω, π(x) = 1.
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Possibility distribution and upper bound of probability
distribution

Qualitative interpretation : description of imprecise concept (cheap,
young, . . .)

Probabilistic interpretation : Upper bound of a family of probability
distribution :

P(π) = {p ∈ P, ∀A ∈ Ω,N(A) ≤ P(A) ≤ Π(A)}.

States of knowledge :

• complete knowledge : no uncertainty.
• total ignorance : all probability distributions are possible.
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Specificity order

Specificity π � π′, if and only if:

π � π′ ⇔ ∀x ∈ Ω, π(x) ≤ π′(x)

σ-specificity (discrete case) : π �σ π′, if and only if is exist a
permutation σ ∈ Sq such as:

π �σ π′ ⇔ ∀x ∈ Ω, π(x) ≤ π′(σ(x))

Specificity reflects the amount of information encoded by the
distribution.
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Probability-possibility transformation

∀σ ∈ Sq we have a cumulative distribution T σ
p which encodes p :

∀j ∈ {1, . . . , q},T σ
p (Cj) =

∑
k,σ(k)≤σ(j)

p(Ck).

∀σ ∈ Sq, p ∈ P(T σ
p )

Probability-possibility transformation (T ∗p ) : the most σ specific
possibility distribution which bounds the distribution

T ∗p is a cumulative function of p

T ∗p = T σ∗
p where correspond to σ∗ ∈ Sq follows the probability

increasing order
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Probability-possibility transformation : example

p

T ∗p

T σ1

p

T σ2

p
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Possibility distribution: continuous case

α-cuts are subsets of Ω such that:

Aα(π) = {x ∈ Ω, π(x) ≥ α}.

Specificity order based on inclusion of α-cuts

Probability possibility transformation :

T ∗p (x) = maxα,x∈Iα(1− α)
T ∗p corresponds to the cumulative distribution function of p according
to the order the values of p(x).

α-cuts are upper bounds of I(1−α)
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Probability-possibility transformation of a Gaussian
distribution
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Possibilistic distribution encoding uncertainty around
Gaussian parameters

x

D
en

si
ty

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N(0,1)
N(mu,sigma)
N(a,b) 
pi
trapez*

M. Serrurier IRIT, Toulouse, France Imprecise probabilities and machine learning May 27, 2015 11 / 37



Why using possibility distribution ?

Probability-possibility transformation → loss of information but ..

Possibility distribution can different state of knowledge from complete
knowledge to total ignorance

T ∗p +uncertainty around parameters of p → less specific possibility
distribution

σ-specificity respect the entropy order

T ∗p �σ T ∗p′ ⇒ H(p) ≤ H(p′)

Goal : describe loss and entropy functions that support the
σ-specificity order and the probabilistic interpretation of possibility
distribution
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Probabilistic loss functions

Loss functions L(f ,X ) measure adequateness between data
X = {x1, . . . , xn} and a distribution f .

Loss function L(f ,X ) is linear w.r.t. X : L(f ,X ) =
∑n

i=1 L(f ,xi )
n

common loss functions :

Log loss :Llog (p|X ) = −
∑q

j=1 αj log(pj).

Squared loss : Lsqr (p|X ) = 1
2 ∗

∑q
j=1 p

2
j − (

∑q
j=1 αj ∗ pj)

Loss functions are minimal for the frequency distribution (i.e. pj = αj)
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Possibilistic log-loss function

Principle given a possibility distribution π:
consider σ s.a. π(Cσ(1)) ≤ . . . ≤ π(Cσ(q))

consider BCj =
⋃j

i=1 Cσ(i) and BCj as binary event space

(π(Cσ(j)), 1− π(Cσ(j))) is a probability distribution on Ωj = {BCj ,BCj}
apply re-scaled loss function to each Bernoulli distribution

Poss-log loss :

Lπ-l(π|X )) =

−
q∑

j=1

(
cdfj

2
∗ log(

πj
2

) + (1−
cdfj

2
) ∗ log(1−

πj
2

)).

Poss-squared loss :

Lπ-s(π|X ) =
1

2

q∑
j=1

π2j +

q∑
j=1

cdfj −
q∑

j=1

πj ∗ cdfj

M. Serrurier IRIT, Toulouse, France Imprecise probabilities and machine learning May 27, 2015 14 / 37



Possibilistic log-loss function : properties

Linearity

Lπ is linear with respect to X

Optimality for probability possibility transformation

we have arg min(Lπ(π|X )) = T ∗pα ( where pα is the frequency
distribution).

Specificity order

∀σ ∈ Sq,T
σ
pα � π1 � π2 ⇒

Lπ(T σ
pα |X ) ≤ Lπ(π1|X ) ≤ Lπ(π2|X )
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Possibilistic loss function and entropy: continuous case

Direct extension of the discrete case based on α-cuts

Poss-log loss :

Lπ-l(π|x) = −
∫
R
log(1− π(x)/2)dx

− 0.5 ∗
∫
Aπx

log(π(x)/2)− log(1− π(x)/2)dx

Poss-squared loss :

Lπ-l(π|x) =

∫
Aπ(x)

π(t)dt − |Aπ(x)| −
1

2

∫
R
π(t)2dt

Same properties than in the discrete case
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Special cases

Gaussian distribution

Confidence intervals obtained by mood regions
Analytic formulas for the possibility distribution that encodes such
family
Poss-log loss has to be approximated

Triangular and trapezoidal possibility distributions

Triangular distribution upper bound any unimodal distribution at a
given confidence threshold
Poss-squared loss easy to compute.

M. Serrurier IRIT, Toulouse, France Imprecise probabilities and machine learning May 27, 2015 17 / 37



Approximation with Poss-squared loss
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Entropy

Probabilistic case :

The entropy is the loss function value of the frequency distribution (i.e.
H(pα) = L(pα|X ))
Entropy is maximal for the uniform distribution
Entropy is minimal when all the data pertain to the same class

Expected properties in the possibilistic case

The possibilistic entropy applied to probability possibility
transformations respects the specificity order.
The possibilistic entropy increases when uncertainty around the
considered probability distribution increases.
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Possibilistic cumulative entropy

The possibility cumulative entropy is the entropy of a possibility
distribution π with respect to a probability distribution p

Hπ-l(p, π) =

=−
q∑

j=1

T∗p (Cj )

2 ∗ log(
π(Cj )
2 )+(1− T∗p (Cj )

2 )∗log(1− π(Cj )
2 )

q ∗ log(q)
.

(1)
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Possibilistic cumulative entropy : properties

Given X and his associated frequency distribution pα we have
Hπ-l(pα, π) = Lπ-l (π|X )

q∗log(q)

Specificity order

T ∗p � T ∗p′ ⇒ Hπ-l(p,T ∗p ) ≤ Hπ-l(p′,T ∗p′)

Increase with uncertainty

T ∗p � π � π′ ⇒ Hπ-l(p,T ∗p ) ≤ Hπ-l(p, π) ≤ Hπ-l(p, π′)
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Possibilistic cumulative entropy for a limited set of data

Given p(c) estimated from n pieces of data, we compute the upper
bound p∗γ,n of the (1− γ)% confidence interval with Agresti-Coull
method.

Possibility distribution as an upper bound of the frequency distribution

πγp,n(Cj) = P∗γ,n(

j⋃
i=1

Cσ(i))

where σ ∈ Sq follows the probability order.

Possibilistic entropy of a frequency distribution estimated from n
pieces of data :

H∗π-l(p, n, γ) = Hπ-l(p, πγp,n)
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Example

p(C1) = 0.5, p(C2) = 0.2 and
p(C3) = 0.3.

n = 10 (γ = 0.05)

π0.05p,10(C1) = P∗0.05,10(C1 ∪ C2 ∪ C3) = 1

π0.05p,10(C2) = p∗0.05,10(C2) = 0.52

π0.05p,10(C3) = P∗0.05,10(C2 ∪ C3) = 0.76

H∗π-l(p, 50, 0.05) = 0.38.
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Possibilistic cumulative entropy for a limited set of data :
properties

Encoding

p ∈ P(πγp,n)
∀n > 0, π∗p � π

γ
p,n and lim

n→∞
πγp,n = π∗p

Increases when uncertainty increases

given n′ ≤ n we have

∀γ ∈]0, 1[,H∗π-l(p, n, γ) ≤ H∗π-l(p, n′, γ)

Stability

given p and p′ we have

∀γ ∈]0, 1[,T ∗p � T ∗p′ ⇒ H∗π-l(p, n, γ) ≤ H∗π-l(p′, n, γ)
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Bayesian revision

M. Serrurier IRIT, Toulouse, France Imprecise probabilities and machine learning May 27, 2015 25 / 37



Possibilistic cumulative entropy
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Upper entropy on credal sets

Without specificity term With specificity term
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Application to the learning of decision tree : motivations

Learning of decision trees is based on entropy of frequency
distributions

When we go deeper downward the tree, the examples become rarer
and the faithfulness of entropy decreases

Log entropy-based gain : splitting a node always decreases the
weighted entropy of the leaves obtained
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Algorithm

Principal : recursively choose the attribute that maximize the gain
function

Log gain function :

G (Z ,A) = H(pZ )−
r∑

k=1

|vk |
n
H(pvk)

Possibilistic gain function :

Gπ
γ (Z ,A) = H∗π-l(pZ , n, γ) −
r∑

k=1

|vk |
n
H∗π-l(pvk , |vk |,DS(γ, r)).
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Advantages of the approach

Significant choices of split

Statistically relevant stopping criterion

Reasonable estimator of the performances of a decision tree

Provide well sized and well balanced trees
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Online algorithm

Algorithm :
1 browse recursively the tree to the corresponding leaf
2 add x to the set of examples
3 search the attribute with the best Gπγ
4 if the gain is positive, create a new node with the corresponding

attribute, else do nothing.

Advantages :

Incremental algorithm
Built new leaves only when the split gives a statistical significant gain
Only consider the leaf concerned by the new example
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Experiments : Entropy vs size

size vs log loss size vs possibilistic log-loss
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Experiments : entropy vs accuracy

Accuracy vs log-loss Accuracy vs possibilistic log-loss
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Accuracy comparison

Data set Log Tree PrunTree ΠTree O-ΠTree J48
soybean 89.4±5.0 89.4±5.0 94.0±2.8 89.0±3.8 91.7±3.1
lymph 72.9±11.8 72.9±11.8 78.3±7.9 78.3±8.2 75.8±11.0
zoo2 97.0±4.8 97.0±4.8 97.0±4.8 96.0±5.1 92.6±7.3
ilpd 67.9±5.5 67.4±5.6 69.9±5.3 66.8±4.7 68.1±5.6
yeast 52.0±4.1 57.0±3.3 57.1±3.4 56.7±3.6 56.6±3.7
waveform 75.2±1.5 75.3±1.5 77.4±1.5 72.6±1.8 75.2±1.9
diabetes 68.7±5.7 70.4±4.7 74.3±4.4 70.4±3.4 74.4±5.2
banknote 98.3±1.1 98.3±1.1 98.3±1.0 97.4±2.1 98.5±1.0
ecoli 78.9±7.7 80.4±7.4 82.4±7.9 83.6±7.2 82.8±5.7
vehicle 71.6±4.7 71.6±4.0 74.1±4.1 69.1±3.1 72.2±4.3
ionosphere 90.3±4.7 90.3±4.7 91.1±3.6 87.7±4.0 89.7±4.3
segment 96.8±0.6 96.7±0.7 96.9±1.2 94.7±1.4 96.7±1.2
pendigits 96.5±0.5 96.4±0.5 96.4±0.2 93.2±1.0 96.5±0.6
spambase 91.8±1.2 91.7±1.3 94.0±1.3 90.5±1.2 92.8±1.0
breast-wv2 92.9±2.4 92.9±2.4 93.9±3.1 94.7±1.6 94.1±2.5
wine2 92.5±8.7 92.5±8.7 93.7±7.3 94.3±8.3 93.2±5.9
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Size comparison

Number leaves of LogTree, PrunTree, ΠTree and O-ΠTree, J4.8
comparison for different databases.
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Regression trees

Same approach than for decision trees with poss-log los function

Use possibilistic cumulative entropy of the possibility distribution that
encodes the family of Gaussian distribution that has parameters inside
the confidence interval based on mood confidence region.

Online algorithm also works

Promising results
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Conclusions

Possibility loss functions and entropies

Agrees with the probabilistic view of possibility theory
Reflects both the entropy of a probability distribution and the
uncertainty around the parameters
Can be used for upper estimate densities without assuming a particular
shape

Application to decision and regression trees :

Provides well balanced and well sized trees
Avoids over-fitting
Simple and efficient online algorithm

Easy extension to :

Bayesian networks
Density estimation
Bandwidth selection in knn
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