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My boon companions

FILIP HERMANS ENRIQUE MIRANDA JASPER DE BOCK



Jean Ville and martingales



Jean-André Ville, 1910–1989



The original definition of a martingale

Étude critique de la notion de collectif, 1939, p. 83



In a (perhaps) more modern notation

Ville’s definition of a martingale
A martingale s is a sequence of real functions so, s1(X1), s2(X1,X2), . . .
such that

1 so = 1;
2 sn(X1, . . . ,Xn)≥ 0 for all n ∈ N;
3 E(sn+1(x1, . . . ,xn,Xn+1)|x1, . . . ,xn) = sn(x1, . . . ,xn) for all n ∈N0 and all

x1, . . . ,xn.

It represents the outcome of a fair betting scheme, without borrowing
(or bankruptcy).

The definition uses only the local models E(·|x1, . . . ,xn) for Xn+1.



A few results

A precursor to Doob’s martingale inequality
Let s be a martingale, then

P
(

limsup
n→+∞

sn(X1, . . . ,Xn)≥ λ

)
≤ 1

λ
for all λ > 1.

Ville’s theorem
The convex collection of all (locally defined) martingales determines the
probability P on the sample space Ω:

P(A) = sup{λ ∈ R : s martingale and limsup
n→+∞

λ sn(X1, . . . ,Xn)≤ IA}

= inf{λ ∈ R : s martingale and liminf
n→+∞

λ sn(X1, . . . ,Xn)≥ IA}
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Consequences of Ville’s theorem

P(A) = sup{λ ∈ R : s martingale and limsup
n→+∞

λ sn(X1, . . . ,Xn)≤ IA}

= inf{λ ∈ R : s martingale and liminf
n→+∞

λ sn(X1, . . . ,Xn)≥ IA}

Null events
If there is a martingale s that converges to +∞ on an event A, so

lim
n→∞

sn(x1, . . . ,xn) = +∞ for all (x1, . . . ,xn, . . .) ∈ A,

then P(A) = 0.

This suggest a ‘constructive’ method for proving almost sure results.



Consequences of Ville’s theorem

P(A) = sup{λ ∈ R : s martingale and limsup
n→+∞

λ sn(X1, . . . ,Xn)≤ IA}

= inf{λ ∈ R : s martingale and liminf
n→+∞

λ sn(X1, . . . ,Xn)≥ IA}

Turning things around
Ville’s theorem suggests that we could take a convex set of martingales
as a primitive notion, and probabilities and expectations as a derived
notion.

That we need an convex set of them, elucidates that martingales are
examples of partial probability assessments.



Imprecise probabilities:
dealing with partial probability

assessments



Partial probability assessments
lower and/or upper bounds for the probabilities of a number of events,
of the expectations of a number of random variables

Imprecise probability models
A partial assessment generally does not determine a probability
measure uniquely, only a convex closed set of them.

IP Theory
systematic way of dealing with, representing, and making conservative
inferences based on partial probability assessments
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Why work with sets of desirable gambles?

Working with sets of desirable gambles:
is simple, intuitive and elegant
is more general and expressive than probability and expectation
bounds
gives a geometrical flavour to probabilistic inference
shows that probabilistic inference and Bayes’ Rule are ‘logical’
inference
includes precise probability as one special case
includes classical propositional logic as another special case
avoids problems with conditioning on sets of probability zero



First steps: Williams (1977)

@ARTICLE{williams2007,
author = {Williams, Peter M.},
title = {Notes on conditional previsions},
journal = {International Journal of Approximate Reasoning},
year = 2007,
volume = 44,
pages = {366--383}

}



First steps: Walley (2000)

@ARTICLE{walley2000,
author = {Walley, Peter},
title = {Towards a unified theory of imprecise probability},
journal = {International Journal of Approximate Reasoning},
year = 2000,
volume = 24,
pages = {125--148}

}



Set of desirable gambles as a belief model
A subject is uncertain about the value that a variable X assumes in X .

Gambles:
A gamble f : X → R is an uncertain reward whose value is f (X).

H

T

−1 1

−1

1

( f (H), f (T ))

Set of desirable gambles:
D ⊆ G (X) is a set of gambles that a subject strictly prefers to zero.
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Coherence for a set of desirable gambles
A set of desirable gambles D is called coherent if:

D1. if f ≤ 0 then f 6∈D [not desiring non-positivity]
D2. if f > 0 then f ∈D [desiring partial gains]
D3. if f ,g ∈D then f +g ∈D [addition]
D4. if f ∈D then λ f ∈D for all real λ > 0 [scaling]

H

T

−1 1

−1

1

Precise models cor-
respond to the special
case that the convex
cones D are actually
halfspaces!
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Inference: natural extension

H

T

−1 1

−1

1A

posi(K ) :=
{ n

∑
k=1

λk fk : fk ∈K ,λk > 0,n > 0
}
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Inference: natural extension

H

T

−1 1

−1

1E (A ) := posi(A ∪G>0(X))

posi(K ) :=
{ n

∑
k=1

λk fk : fk ∈K ,λk > 0,n > 0
}



Inference: conditioning

Additional information that X ∈ A leads to a conditioned set of desirable
gambles DcA on A:

f ∈DcA⇔ f IA ∈D



Connection with lower expectations

H

T

−1 1

−1

1

f

f −E( f )

E( f )

E( f ) = sup{α ∈R : f −α ∈D}
supremum buying price for f

cl(D)= { f ∈G (X) : E( f )≥ 0}
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Conditional lower and upper expectations
Conditional lower expectation:

E( f |A) = sup{α ∈ R : f −α ∈DcA}
= sup{α ∈ R : [ f −α]IA ∈D}

Conditional upper expectation:

E( f |A) = inf{α ∈ R : α− f ∈DcA}
= inf{α ∈ R : [α− f ]IA ∈D}

Conjugacy:

E( f |A) = inf{α ∈ R : [α− f ]IA ∈D}= inf{−α ∈ R : [−α− f ]IA ∈D}
=−sup{α ∈ R : [− f −α]IA ∈D}
=−E(− f |A)



Recall: A few results

A precursor to Doob’s martingale inequality
Let s be a martingale, then

P
(

limsup
n→+∞

sn(X1, . . . ,Xn)≥ λ

)
≤ 1

λ
for all λ > 1.

Ville’s theorem
The collection of all (locally defined!) martingales determines the
probability P on the sample space Ω:

P(A) = sup{λ ∈ R : s martingale and limsup
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λ sn(X1, . . . ,Xn)≤ IA}
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Back to (sub- and
super)martingales



@ARTICLE{cooman2008,
author = {de Cooman, Gert and Hermans, Filip},
title = {Imprecise probability trees: Bridging two theories of imprecise probability},
journal = {Artificial Intelligence},
year = {2008},
volume = {172},
pages = {1400–1427},
number = {11},
doi = {10.1016/j.artint.2008.03.001}

}



An event tree and its situations

Situations are nodes in the event tree, and the sample space Ω is the
set of all terminal situations:

t

ω

initial

terminal

non-terminal



Events

An event A is a subset of the sample space Ω:

s

E(s) := {ω ∈Ω : sv ω}



Cuts of a situation

t

u3

u2

u1

U



A directed set of cuts

t

U V

U precedes V : U vV



A process

A process F is a way of populating the event tree with real numbers:

t

ω

F (�)

F (ω)

F (t)



Local, or immediate prediction, models

In each non-terminal situation s, Subject has a belief model Ds,
satisfying D1–D4. This also leads to local lower expectations Q(·|s)

s

c2

c1

t

Ds ⊆ G (D(s)) Dt ⊆ G (D(t))

D(s) = {c1,c2} is the set of daughters of s.



From a local to a global model

How to combine the local information into a coherent global model:

Subject accepts which gambles f on the entire sample space Ω?

s

c2

c1

hs ∈Ds

hs(c1)

hs(c2)

ĥs→ 0

ĥs→ 0

ĥs→ 0

ĥs→ 0

ĥs→ 0
ĥs→ 0

ĥs→ hs(c1)

ĥs→ hs(c2)

ĥs→ hs(c2)
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ĥs→ hs(c2)



Natural extension

So the Subject accepts all gambles in the set:

A := {ĥs : hs ∈Ds and s non-terminal}.

We found an expression for the natural extension E (A ) of A :

this is the smallest subset D of G (Ω) that includes A , is coherent
(satisfies D1–D4) and satisfies
D5. bounded cut conglomerability: for all bounded cuts U :

(∀u ∈U)(IE(u) f ∈D ∪{0})⇒ f ∈D ∪{0}.

D6. bounded cut continuity: for any real process F such that
limsupU bounded FU ∈ G (Ω), and such that FV −FU ∈D ∪{0} for
all bounded cuts U vV : limsupU bounded FU −F (�) ∈D ∪{0}.

Observe that limsupU bounded FU = limsupF .
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Sub- and supermartingales

We can use the local lower expectations Q(·|s) associated with the local
modes Ds to define sub- and supermartingales:

A submartingale M

is a real process such that in all non-terminal situations s:

Q(M (s ·)|s)≥M (s)

or in other words ∆M (s) = M (s ·)−M (s) ∈ cl(Ds).

A supermartingale M

is a real process such that in all non-terminal situations s:

Q(M (s ·)|s)≤M (s).



Natural extension, sub- and supermartingales

Conditional lower and upper expectations:

E( f |s) :=sup{α ∈ R : [ f −α]IE(s) ∈ E (A )}
=sup{M (s) : limsupM ≤ f on E(s)}

E( f |s) := inf{α ∈ R : [α− f ]IE(s) ∈ E (A )}
= inf{M (s) : liminfM ≥ f on E(s)}
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Test supermartingales and strictly null events

A test supermartingale T

is a non-negative supermartingale with T (�) = 1.
(Very close to Ville’s definition of a martingale.)

An event A is strictly null
if there is some test supermartingale T that converges to +∞ on A:

limT (ω) = lim
n→∞

T (ωn) = +∞ for all ω ∈ A.

If A is strictly null then

P(A) = E(IA) = inf{M (�) : liminfM ≥ IA}= 0.



A few basic limit results

Supermartingale convergence theorem [Shafer and Vovk, 2001]
A supermartingale M that is bounded below converges strictly almost
surely to a real number:

liminfM (ω) = limsupM (ω) ∈ R strictly almost surely.



A few basic limit results

Strong law of large numbers for submartingale differences [De
Cooman and De Bock, 2013]
Consider any submartingale M such that its difference process

∆M (s) = M (s ·)−M (s) ∈ G (D(s)) for all non-terminal s

is uniformly bounded. Then liminf〈M 〉 ≥ 0 strictly almost surely, where

〈M 〉(ωn) =
1
n
M (ωn) for all ω ∈Ω and n ∈ N



A few basic limit results

Lévy’s zero–one law [Shafer, Vovk and Takemura, 2012]
For any bounded real gamble f on Ω:

limsup
n→+∞

E( f |ωn)≤ f (ω)≤ liminf
n→+∞

E( f |ωn) strictly almost surely.



Imprecise Markov chains



@ARTICLE{cooman2009,
author = {{d}e Cooman, Gert and Hermans, Filip and Quaegehebeur, Erik},
title = {Imprecise {M}arkov chains and their limit behaviour},
journal = {Probability in the Engineering and Informational Sciences},
year = 2009,
volume = 23,
pages = {597--635},
doi = {10.1017/S0269964809990039}

}



A simple discrete-time finite-state stochastic process

a

(a,a)

(a,a,a)

(a,a,b)

(a,b)

(a,b,a)

(a,b,b)

b

(b,a)

(b,a,a)

(b,a,b)

(b,b)

(b,b,a)

(b,b,b)

Q(·|�)

Q(·|a)

Q(·|b)

Q(·|a,a)

Q(·|b,b)

Q(·|b,a)

Q(·|a,b)



An imprecise IID model

a
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(a,b,a)

(a,b,b)

b
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(b,b,a)

(b,b,b)

Q(·|�)

Q(·|�)
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Q(·|�)

Q(·|�)
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An imprecise Markov chain

a
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b
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Lower transition operators

The lower expectation En for the state Xn at time n:

En( f ) = E( f (Xn)) for all f ∈ G (X).

Lower transition operator
It follows from the SVV-formulas for lower expectations in an imprecise
Markov tree that:

En( f ) = E1(T
n−1 f ) for all f ∈ G (X).

where T: G (X)→ G (X) is defined by

T f (x) = Q( f |x) for all x ∈X .

Compare this with precise case: pn = p1Mn−1.
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Stationarity and ergodicity
The imprecise Markov chain is Perron–Frobenius-like if for all marginal
models E1 and all f :

En( f ) = E1(T
n−1 f )→ E∞( f ).

and if E1 = E∞ then En = E∞, and the imprecise Markov chain is
stationary.

In any Perron–Frobenius-like imprecise Markov chain:

lim
n→+∞

1
n

n

∑
k=1

En( f ) = E∞( f )

and

E∞( f )≤ liminf
n→+∞

1
n

n

∑
k=1

f (Xk)≤ limsup
n→+∞

1
n

n

∑
k=1

f (Xk)≤ E∞( f )

strictly almost surely.
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What’s next?



So much still to be done:

mathematical foundations: continuous time, alternative formulae,
other definitions of sub- and supermartingales, . . .
allowing for robust modelling in stochastic processes
other processes than Markov chains
applications in finance and economics
foundations of uncertain inference and time: dynamic coherence
. . .
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