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Jean Ville and martingales



Jean-André Ville, 1910-1989

Lk
Jean André Ville en 1929



The original definition of a martingale

Dewvintrion 1. — Soit Xy, Xy, ..., Xa, ... une suite de
variables aléatoires, telle que les probabilités

Pro{Xi<a, Xa <y ..., Xn<@at (n=1,2,3,...)

soient bien définies et que les X; ne puissent prendre que des
valeurs finies.

Soit une suite de fonctions sy, sy(zy), $2(Z1, Z2), ... nOR
négatives telles que

S=1,

an',,t,,...,t._‘isn(mi, Zsy ooy -1, Xn) } = $p—1(&1, a. ..., Tn—r),

(16) {

o My{Y} représente d’une maniére générale la valeur
moyenne conditionnelle de la variable Y quand on connait la
position du point aléatoire X, au sens indiqué par M. P. Lévy.

Dans ces conditions, nous dirons que la suite { s, | définit une
martingale ou un jeu équitable.

Etude critique de la notion de collectif, 1939, p. 83



In a (perhaps) more modern notation

Ville’s definition of a martingale

A martingale s is a sequence of real functions s, s1(X1), s2(X1,X2), - ..
such that

So = ls
sn(X1,...,X,) >0forallneN;
E(sp1(x1, ooy Xy X 1) X105 -+ oy Xn) = su(x1, ..., x,) for all n € Ny and all

X1yeeeyXpe

It represents the outcome of a fair betting scheme, without borrowing
(or bankruptcy).

The definition uses only the local models E(:|xy,...,x,) for X, .



A few results

A precursor to Doob’s martingale inequality
Let s be a martingale, then

P(limsupsn(Xl,...,Xn) > l) < % forall A > 1.

n—y—+oo



A few results

A precursor to Doob’s martingale inequality
Let s be a martingale, then

P(limsupsn(Xl,...,Xn) > QL) < % forall A > 1.

n—y—+oo

Ville’s theorem
The convex collection of all (locally defined) martingales determines the
probability P on the sample space Q:

P(A) =sup{A € R: s martingale and limsupAs,(Xj,...,X,) <Is}

n—+oo

=inf{A € R: s martingale and liminflsn(xl, e Xn) > 14}
n—r—+o0



Consequences of Ville’s theorem

P(A) =sup{A € R: s martingale and limsupAs,(Xi,...,X,) <Is}

n—y+oo

=inf{A € R: s martingale and liminfAs,(Xi,...,X,) > I}

n——+oo

Null events

If there is a martingale s that converges to + on an event A, so
lim sy, (x1,...,x,) = feo forall (x,...,x,,...) €A,
n—oo

then P(A) = 0.

This suggest a ‘constructive’ method for proving almost sure results.



Consequences of Ville’s theorem

P(A) =sup{A € R: s martingale and limsupAs,(Xj,...,X,) <I4}

n—+oo

=inf{A € R: s martingale and liminf/lsn(Xl, o Xn) > 14}
n—y 00

Turning things around

Ville’s theorem suggests that we could take a convex set of martingales
as a primitive notion, and probabilities and expectations as a derived
notion.

That we need an convex set of them, elucidates that martingales are
examples of partial probability assessments.



Imprecise probabilities:
dealing with partial probability
assessments



Partial probability assessments

lower and/or upper bounds for the probabilities of a number of events,
of the expectations of a number of random variables
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Imprecise probability models

A partial assessment generally does not determine a probability
measure uniquely, only a convex closed set of them.



Partial probability assessments

lower and/or upper bounds for the probabilities of a number of events,
of the expectations of a number of random variables

Imprecise probability models

A partial assessment generally does not determine a probability
measure uniquely, only a convex closed set of them.

IP Theory

systematic way of dealing with, representing, and making conservative
inferences based on partial probability assessments



Why work with sets of desirable gambles?

Working with sets of desirable gambles:
m is simple, intuitive and elegant

m is more general and expressive than probability and expectation
bounds

m gives a geometrical flavour to probabilistic inference

m shows that probabilistic inference and Bayes’ Rule are ‘logical’
inference

m includes precise probability as one special case
m includes classical propositional logic as another special case
= avoids problems with conditioning on sets of probability zero



First steps: Williams (1977)
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Abstract

‘The personalist conception of probability is often explicated in terms of betting rates acceptable
to an individual. A common approach, that of de Finetti for example, assumes that the individual is
willing to take cither side of the bet, so that the bet is “fair” from the individual’s point of view. This
can sometimes be unrealistic, and leads to difficultics in the case of conditional probabilities or pre-
visions. An alternative conception is presented in which it is only assumed that the collection of
‘acceptable bets forms a convex cone, rather than a linear space. This leads to the more general con-
ception of an upper conditional prevision. The main concerns of the paper are with the extension of
upper conditional previsions. The main result is that any upper conditional prevision is the upper
envelope of a family of additive conditional previsions.

2006 Elsevier Inc. Al rights reserved.
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First steps: Walley (2000)
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Towards a unified theory of imprecise
probability

Peter Walley
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Set of desirable gambles as a belief model

A subject is uncertain about the value that a variable X assumes in 2".

Gambles:
A gamble f: 2" — R is an uncertain reward whose value is f(X).

(f(H),f(T))e




Set of desirable gambles as a belief model

A subject is uncertain about the value that a variable X assumes in 2".

Gambles:
A gamble f: 2" — R is an uncertain reward whose value is f(X).

(f(H),f(T))e

Set of desirable gambles:
2 C 9 (Z)is a set of gambles that a subject stricily prefers to zero.



Coherence for a set of desirable gambles

A set of desirable gambles Z is called coherent if:

D1.
D2.
D3.
D4.

if f<O0then f¢ 2 [not desiring non-positivity]
if f>0then fe 2 [desiring partial gains]
if f,ge Zthen f+gec [addition]
if fezthenAfe Zforallreal A >0 [scaling]

T
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respond to the special
case that the convex
cones 7 are actually
halfspaces!
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Inference: natural extension




Inference: natural extension
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Inference: natural extension

T

E () = rposi( UY-o(2))

posi(%) = {Zlkfk: fi € A, M >0,n>0}
k=1



Inference: conditioning

Additional information that X € A leads to a conditioned set of desirable
gambles Z|A on A:
fETIAS flyceD



Connection with lower expectations

E(f)=sup{aeR: f—aec P}
supremum buying price for f
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Connection with lower expectations

E(f)=sup{aeR: f—aec P}
supremum buying price for f




Conditional lower and upper expectations
Conditional lower expectation:

E(flA)=sup{a e R: f—ac Z]A}
=sup{a eR: [f—all4 € Z}

Conditional upper expectation:

E(flA) =infla e R: a— f € Z]A}
=inf{o € R: [ — ]Iy € 7}

Conjugacy:
E(flJA) =inf{a € R: [0 — f]I € 2} =inf{—a € R: [~ — f]I, € Z}
=—sup{a eR: [—f—a|ly € 7}
=—E(-flA)



Recall: A few results

A precursor to Doob’s martingale inequality
Let s be a martingale, then

P(limsupsn(Xl,...,Xn) > QL) < % forall A > 1.

n—y—+oo

Ville’s theorem
The collection of all (locally defined!) martingales determines the
probability P on the sample space Q:

P(A) =sup{A € R: s martingale and limsupAs,(Xj,...,X,) <Is}

n—+oo

=inf{A € R: s martingale and liminflsn(xl, e Xn) > 14}
n—r—+o0



Back to (sub- and
super)martingales
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Abstract

We give an overview of two approaches to probability theory where lower and upper probabilities, rather than probabilities,
are used: Walley's behavioural theory of imprecise probabilities, and Shafer and Vovk's game-theoretic account of probability.
‘We show that the two theories are more closely related than would be suspected at first sight, and we establish a correspondence
‘berween them that (i) has an interesting interpretation, and (ii) allows us to freely import results from one theory into the other.
Our approach leads to an account of probability trees and random processes in the framework of Walley's theory. We indicate how
our results can be used to reduce the computational complexity of dealing with imprecision in probability trees, and we prove an
interesting and quite general version of the weak law of large numbers.

©2008 Elsevier B.V. All rights reserved.
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An event tree and its situations

Situations are nodes in the event tree, and the sample space Q is the
set of all terminal situations:

a') .
____—%— terminal

initia{ /

non-terminal



Events

An event A is a subset of the sample space Q:




Cuts of a situation

uj

Uz

u3




A directed set of cuts

U precedes V:ULCV



A process

A process .# is a way of populating the event tree with real numbers:

e F (o)
e

/
\ /:
% o
Z(0) /

e

\t/.
/
F (1)



Local, or immediate prediction, models

In each non-terminal situation s, Subject has a belief model %,
satisfying D1-D4. This also leads to local lower expectations Q(-|s)

D(s) ={c1,c2} is the set of daughters of s.



From a local to a global model

How to combine the local information into a coherent global model:

Subject accepts which gambles f on the entire sample space Q?




From a local to a global model

How to combine the local information into a coherent global model:

Subject accepts which gambles f on the entire sample space Q?

hy — 0
s — 0

SOOSY SO =0
k=] =] =]
Ll

o o O




Natural extension
So the Subject accepts all gambles in the set:
o = {hs: hy € 9, and s non-terminal}.

We found an expression for the natural extension &(.«7) of </



Natural extension
So the Subject accepts all gambles in the set:
o = {hs: hy € 9, and s non-terminal}.

We found an expression for the natural extension &(.«7) of </
this is the smallest subset 2 of ¥(Q) that includes <7, is coherent
(satisfies D1-D4) and satisfies

D5. bounded cut conglomerability: for all bounded cuts U:

(Vu € U)(]IE(M)f € 2U{0}) = f € 2U{0}.

D6. bounded cut continuity: for any real process .% such that
limsupy; pounded - Zu € 4(), and such that .7y — .7y € 2U{0} for
all bounded cuts U C V: limsupy, pounded Zu — -7 (O) € 2U{0}.

Observe that limsupy; younged -#v = limsup 7.



Sub- and supermartingales

We can use the local lower expectations Q(-|s) associated with the local
modes Z; to define sub- and supermartingales:

A submartingale .#
is a real process such that in all non-terminal situations s:

O(A(s")|s) = A(s)
or in other words A (s) = M (s-) — A (s) € cl(D).

A supermartingale .#
is a real process such that in all non-terminal situations s:

O(A (s-)|s) < A (s).



Natural extension, sub- and supermartingales

Conditional lower and upper expectations:

E(fls) =sup{a € R: [f — o]l € E()}
=sup{Z(s): limsup.#Z < fon E(s)}

E(f]s) =inf{a € R: [a— f]lg(,) € ()}
=inf{.# (s): liminf.#Z > f on E(s)}



Natural extension, sub- and supermartingales

Conditional lower and upper expectations:

E(fls) =sup{a € R: [f — ]l € £()}
=sup{#(s): limsup.#Z < fon E(s)}

E(f]s) =inf{a € R: [0 — f]lg(s) € ()}
=inf{.#(s): liminf.#Z > f on E(s)}

Recall Ville’s Theorem

P(A) =sup{A € R: s martingale and limsupAs,(Xi,...,X,) <Ix}

n——+oo

=inf{A € R: s martingale and liminf/lsn(Xl, o Xy) > 14}
n—+oo



Test supermartingales and strictly null events

A test supermartingale &

is @ non-negative supermartingale with .7 (0J) = 1.
(Very close to Ville’s definition of a martingale.)

An event A is strictly null
if there is some test supermartingale .7 that converges to + on A:

lim .7 (w) = lim .7 (0") = +eo for all ® € A.

n—yoo

If A is strictly null then

P(A) =E(I4) = inf{#(0): liminf.# >14} = 0.



A few basic limit results

Supermartingale convergence theorem [Shafer and Vovk, 2001]

A supermartingale . that is bounded below converges strictly almost
surely to a real number:

liminf.Z () = limsup.# () € R strictly almost surely.



A few basic limit results

Strong law of large numbers for submartingale differences [De
Cooman and De Bock, 2013]

Consider any submartingale .# such that its difference process
AM(s) = M(s-)— M (s) € 9(D(s)) for all non-terminal s

is uniformly bounded. Then liminf(.#) > 0 strictly almost surely, where

(M) (o) = %4@”) forall 0 cQandneN



A few basic limit results

Lévy’s zero—one law [Shafer, Vovk and Takemura, 2012]
For any bounded real gamble f on Q:

limsupE(f|0") < f(w) < liginff(f](o”) strictly almost surely.
n——+oo n—ree



Imprecise Markov chains



Probability in the Engineering and Informational Sciences, 23,2009, 597-635. Printed in the U.S.A.
doi:10.1017/S0269964809990039

IMPRECISE MARKOV CHAINS AND
THEIR LIMIT BEHAVIOR

GerT DE CoomaN, Fiip HERMANS, AND ERIK QUAEGHEBEUR
SYSTeMS Research Group
_Ghent University
ie 14, 9052 Zwiji Belgium
E-mail: {gert. filip.hermans, erik. .be

When the initial and transition probabilities of a finite Markov chain in discrete time
are not well known, we should perform a sensitivity analysis. This can be done by
onsidering as basic uncertainty models the so-called credal sets that these probabil-
are known or believed to belong to and by allowing the probabilities to vary over
such sets. This leads to the definition of an imprecise Markov chain. We show that
the time evolution of such a system can be studied very efficiently using so-called
lower and upper expectations, which are equivalent mathematical representations of
credal sets. We also study how the inferred credal set about the state at time 1 evolves
inder quite unrestrictive conditions, it con
set given for the initial state. This leads to a non-
I Perron-Frobenius theorem to imprecise Markov

asn—
credal set, regardless of the cr
trivial generalization of the c!
chains.
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A simple discrete-time finite-state stochastic process

(b,b,b)
(b,b,a)

(b.a.b)

AA

(b,a,a)
o(|0)
(a.b,b)

A

(a,b.a)

(a,,b)

<
<

0(:|b,b)
Q(:b,a)
QO(-|a,b)
QO(-la,a)

ﬁ\

(a,a,a)



An imprecise |1ID model
(b,b,b)
(b,b,a)
(b,a,b)
(b,a,a)
(a,b,b)
(-0

(a,b,a)

(a,a,b)

@
o(I0)

At\ﬁ\ﬁ\

(a,a,a)



An imprecise Markov chain

(b,b,b)
(b,b,a)
(b,a,b)
(b,a,a)
(a,b,b)
(a,b,a)

(a,a,b)

{
[¢Qim)
<

/:\ﬁ\ﬁ\ﬁ\

(a,a,a)



Lower transition operators

The lower expectation E, for the state X,, at time n:

E,(f) = E(f(X,)) for all f € 4(2).



Lower transition operators

The lower expectation E, for the state X,, at time n:

E,(f) = E(f(X,) for all f € 4(2).

Lower transition operator

It follows from the SVV-formulas for lower expectations in an imprecise
Markov tree that:

E,(f) = E\(T"'f) for all f € 4(2).
where T: ¥9(2) — ¢ (%) is defined by
Tf(x) =Q(f|x)forallxe 2.

Compare this with precise case: p, = pyM" 1.



Stationarity and ergodicity

The imprecise Markov chain is Perron—Frobenius-like if for all marginal
models E, and all f:

E,(f)=E\(T""'f) = E..(f).

andif E, =E, then E, = E.,, and the imprecise Markov chain is
stationary.



Stationarity and ergodicity

The imprecise Markov chain is Perron—Frobenius-like if for all marginal
models E, and all f:

E,(f)=E\(T"'f) = Eo(f)-
andif E, =E, then E, = E.,, and the imprecise Markov chain is
stationary.
In any Perron—Frobenius-like imprecise Markov chain:
.
Jim s LEL() = E-(f)
and
E_(f) <liminf - Zf X)) < limsup — Zf Xi) < Ew(f)

n—rtee 1 n—s+oeo M ;—

strictly almost surely.



What's next?



So much still to be done:

mathematical foundations: continuous time, alternative formulae,
other definitions of sub- and supermartingales, . ..

allowing for robust modelling in stochastic processes

other processes than Markov chains

applications in finance and economics

foundations of uncertain inference and time: dynamic coherence
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