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Sequential decision-making
under uncertainty

e Consequences of actions are dependent on states of
the world

e Applications : medical diagnosis, troubleshooting under
uncertainty, poker-playing program, etc.

e Graphical models :
o decision trees (Raiffa, 1968)
o influence diagrams (Shachter, 19806)
o MDPs (Dean et al., 1993; Kaebling et al., 1999)

e Sometimes hard to elicit sharp probabilities (several
experts, missing data)

Need for models and algorithms

for dealing with imprecise probabilities o1



Expected utility model

Givenan actf: ©—-X
where 0 is the set of states of the world

X is the set of consequences
and u:R—R a nondecreasing function:

EU, ()=2,P(0).u(f(0))

@H< N @<()

If u(x)=Vx then: % >10,=10 % >1,0,)=6
EU(f,)="2.u(0)+2.u(10) = 1.6 < 2.1 = 1/2.u(3)+1/2u(6)=EU(f,)
f,>f
27 1
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Ambiguity: Ellsberg’s example

Ellsberg’s urn: 73 of red balls, % of black or yellow balls.

Lottery Red Black
f 1 0
fg 0 1
f. 1 0
fg 0 1

Usually: f_>f; and f; >f,
There exists no probability P and utility function u such that:
EUP,u(fR)>EUP’u(fB) and EUF,,u(fB )>EUF,,u(fR )
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Min expected utility model

Multiple priors

The underlying probability measure P could be any
probabillity in the set:

# ={P :P(Red)=%, P(Black or )=%3 }

Min expected utility (Gilboa & Schmeidler, 1989)

Most DM do use the EU model, but on the basis of the
whole set of priors. They maximize the min, over &, of the
possible values of EU:

EU,, (f) = min,_,EU, (f)
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Back to Ellsberg’s example

Ellsberg’s urn: 73 of red balls, % of black or yellow balls.

Lottery Red Black
f 1 0 0
fg 0 1 0
f. 1 0 1
fg 0 1 1
EU,, (f,) = % EU,,(f5,) = 0

EU,,,(fy) = ¥ EU,, () = %
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A sequential game with ambiguity

Consider the following game:

1. toss a coin;

2. aball is drawn from an Ellsberg’s urn (7 of red balls, %
of black or balls):
a. if the coin comes up heads, then bet on red or black
b. if the coin comes up tails, then bet on red or

3. if the guess is wrong, then win 0, otherwise win 1-¢ if
red, 1 if another color.
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Decision tree with ambiguity

PR 1—¢
fr A X2 2o
D, PY 0
PH Pr 0
fB 1 X? L5
Py 0
PR 1—¢
fr_{ X3 o
PT 2% 0
Do
PR 0
fy 1 X% £5 .
Py 1
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Related works

Two research directions:

e assume dynamic feasibility [Kikuti et al., 2011] (seeking
a strategy returned by rolling back the decision tree):
strategy followed by consequentialist decision maker, |.
e. a DM whose present decision does not depend on
the past nor on what she planned to do when making
her first decision.

Pros: appealing from an algorithmic viewpoint
Cons: it may return a dominated strategy [Hammond, 1988]

e follow a resolute choice approach [McClennen, 1990]:
commit to an initial strategy and never deviate later

Huntley and Troffaes [2008] proposed a generic method.
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Evaluating a strategy

Evaluating strategy
(D,=f;,D,=1)

amounts to evaluate

compound lottery:
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with p =%, p;=7%,
P.="3and p +p, =7%.
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Evaluating a strategy

Proposition. Evaluating a strategy according to its min expected utility is an
NP-hard problem, even if all non-degenerated probability intervals are [0,1].

Proof. Reduction (1 Vaa Vas) A (T1V a3 V)
from 3-SAT:

P

X
1)()2%
o

I —po @ Ty
P4 0

1—py
P4 0

@

The 3-SAT formula is satisfiable iff min expected utility = 0.

1—ps
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Evaluating a strategy

The evaluation of a compound lottery can be done via a
mathematical programming formulation, with one variable
for each instanciation of X=<X1,...,Xn):

PR

_ o O O = O

Py

min__,P(X.=H, X,=B) + P(X =T, X,=V)

PeZ»
where & denotes the set of possible probability measures

over the considered decision tree.
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Characterizing set &: main difficulty

Oil wildcatter problem

not drill

0
2 \ ot
drill 50K
dry -70K
notdrill
ho sounding 02 /-" -10K sosk
sounding . 2 ot 190K
drill 40K
not drill dry -80K
-10K
open _— soak
T Dg 190K
closed drill 40K
: dry -80K
N ok
D‘21 02K 190K
et
drill 40K
dry -80K

P(S|T) dry wet soak
no [0.500,0.666] [0.222,0.272] [0.125,0.181]
open | [0.222,0.333] [0.363,0.444] [0.250,0.363]
closed | [0.111,0.166] [0.333,0.363] [0.454,0.625]
T no open closed
P(T) | [0.181,0.222] [0.333,0.363] [0.444,0.454]
S dry wet soak
P(S) | [0.214,0.344] [0.309,0.386] [0.307,0.456]
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Characterizing set &: main difficulty

Oil wildcatter problem

not drill

D L% ek oo P(S|T) | dry wet soak
MW no 0.55 [0.222,0.272] [0.125,0.181]
dry = 70K open | 0.33 [0.363,0.444] [0.250,0.363]
D, o sourens 02 | o, .| closed | 0.12 [0.333,0.363] [0.454,0.625]
sounding no
drill 40K
not dril dry > -80K T no open closed
Ty pa b= "™ souk_ o [_P(T) | 0.20 0.35 0.45
t
Closec drill 40K
not drill dry T -80K S dr wet soak
Dg _/-10K soak 4

- : Et 190K P(S) | 022 [0.309,0.386] [0.307,0.456]
drill 40K
dry -80K

The total probability theorem does not hold:
P(S = dry|T = no)P(T = no) + P(S = dry|T = open)P(T = open) + P(S =

dry|T = closed)P(T = closed) = 0.2795 # 0.22 = P(S = dry)
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Selecting a strategy

The optimality principle does not hold:
In D,: EU(f;) = (1-€)/3 > 0 = EU(f;) = the DM prefers f,
In D,: EU(f;) = (1-¢)/3 > 0 = EU(f,) = the DM prefers f,

PR 1—¢
PB
fr 0
Y 0
D, P
PH Pr 0
fB PB 1
Py 0
PR 1—¢
pB
No—
pr Py 0
D5
PRr 0
=
Py 1

Strategy returned by rolling back: |(D1=fR, D,=f.]
Min expected utility of (D, =f., D,=f.): (1-¢)/3
Min expected utility of (D, =f;, D,=f ): 1/3
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Selecting: separable case

Separable decision tree. For each chance node
X7, we denote by P/ the set of conditional prob-

ability distributions over X;|past(X ,f ) that satis-

fies constraints C/. A decision tree 7 is called sep-
arable (or separately specified, Kikuti et al., 2011) if

_ _ J

Example: sequential variant of Ellsberg’s urn with two distinct Ellsberg’s urns.

The optimal strategy can be computed by rolling back the decision tree.
It involves the solution of a (small) linear program at each chance node, where

the variables are the conditional probabilities.
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Selecting: non-separable case

Dominance relation. A strategy s dominates s’ if:
vV PeZ, EUP’u(s) < EUP’u(s’).

Dominance test: mathematical programming.

If s dominates s’, then ﬂ%(s) < ﬂg’u(s’).

Two-phases approach:
1. Compute the set ND of non-dominated strategies by
rolling back the decision tree [Huntley & Troffaes, 2008]

2. Determine an optimal strategy in ND
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Numerical tests

Separable decision trees (times in sec.) Non-separable decision trees (times in sec.)
h\d 3 4 h 8 10

#nodes time | #nodes time n\w | 0.05 0.1 0.05 0.1

8 2073 <1 5851 <1 T <1 <1 22.0 23.0

10 12441 <1 46811 <1 8 1.4 2.0 51.6 58.0

12 74639 1.2 374491 5.7 9 2.2 24 | 1149 142.3

14 | 447897 7.8 | 2995931  65.5 10 4.3 4.6 | 253.6 328.1

16 | 2687385  57.3 X X 11 7.4 7.7 | 590.7 X

18 X X X X 12 | 14.3 17.8 X X

ND 5 8 29 32

h: depth of the decision tree;
d: outdegree of chance nodes. n: number of random variables; w: imprecision degree;
N D: average size of the non-dominated set.

Algorithms implemented in C++.
CPLEX solved used to solve the mathematical programs.

Numerical tests performed on a Pentium IV 2.13Ghz CPU computer, 3GB RAM
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Research directions

e Use credal networks to define set &#.

e Extend to influence diagrams with imprecise
probabillities

e Resolute choice with selves [Jaffray &
Nielsen, 2006]:

Consider each decision node as a self and
search for a compromise between the selves

More specifically: define a regret for each self,
and compute a strategy that optimizes an
aggregation of the regrets.
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Thank you



