Resolute choice in sequential decision problems with multiple priors

Hélène Fargier, Gildas Jeantet et Olivier Spanjaard IMPRECISE PROBABILITIES WORKSHOP Toulouse, May 29th, 2015

Sequential decision-making under uncertainty

- Consequences of actions are dependent on states of the world
- Applications : medical diagnosis, troubleshooting under uncertainty, poker-playing program, etc.
- Graphical models :
 - decision trees (Raiffa, 1968)
 - influence diagrams (Shachter, 1986)
 - MDPs (Dean *et al.*, 1993; Kaebling et al., 1999)
- Sometimes hard to elicit sharp probabilities (several experts, missing data)

Need for models and algorithms for dealing with imprecise probabilities

Expected utility model

Given an act f : $\Theta \rightarrow X$ where Θ is the set of states of the world X is the set of consequences and $u: R \rightarrow R$ a nondecreasing function: $EU_{P,u}(f) = \sum_{\theta} P(\theta) \cdot u(f(\theta))$ $f_2(\theta_1)=3$ $f_1(\theta_1)=0$ θ_1 θ_1 If $u(x) = \sqrt{x}$ then: $\theta_{\mathbf{2}}$ θ_2 $f_{1}(\theta_{2})=10$ $f_{2}(\theta_{2})=6$ $EU(f_1)=\frac{1}{2}.u(0)+\frac{1}{2}.u(10) \approx 1.6 < 2.1 \approx \frac{1}{2}.u(3)+\frac{1}{2}u(6)=EU(f_2)$ $f_2 > f_1$

Ambiguity: Ellsberg's example

Ellsberg's urn: $\frac{1}{3}$ of red balls, $\frac{2}{3}$ of black or yellow balls.

Lottery	Red	Black	Yellow
f _R	1	0	0
f _B	0	1	0
f _{RY}	1	0	1
f _{BY}	0	1	1

Usually: $f_{R} > f_{B}$ and $f_{BY} > f_{RY}$ There exists no probability P and utility function u such that: $EU_{P,u}(f_{R}) > EU_{P,u}(f_{B})$ and $EU_{P,u}(f_{BY}) > EU_{P,u}(f_{RY})$

Min expected utility model

Multiple priors

The underlying probability measure P could be any probability in the set:

 $\mathscr{P} = \{ P : P(\text{Red}) = \frac{1}{3}, P(\text{Black or Yellow}) = \frac{2}{3} \}$

Min expected utility (Gilboa & Schmeidler, 1989)

Most DM do use the EU model, but on the basis of the whole *set* of priors. They maximize the min, over \mathscr{P} , of the possible values of EU:

$$\underline{\mathsf{EU}}_{\mathscr{P},\mathsf{u}}(\mathsf{f}) = \min_{\mathsf{P}\in\mathscr{P}}\mathsf{EU}_{\mathsf{P},\mathsf{u}}(\mathsf{f})$$

Back to Ellsberg's example

Ellsberg's urn: $\frac{1}{3}$ of red balls, $\frac{2}{3}$ of black or yellow balls.

Lottery	Red	Black	Yellow
f _R	1	0	0
f _B	0	1	0
f _{RY}	1	0	1
f _{BY}	0	1	1

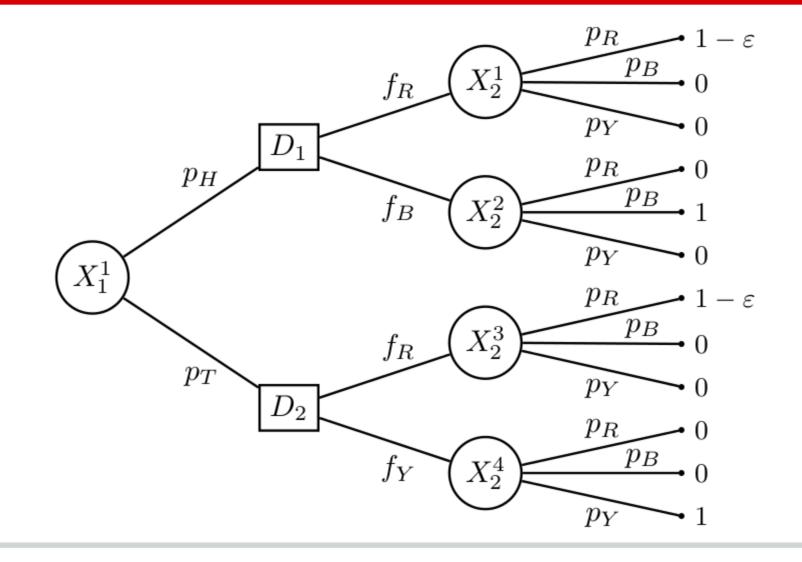
$\underline{EU}_{\mathscr{P},u}(f_R) = \frac{1}{3}$	$\underline{EU}_{\mathscr{P}\!$
$\underline{EU}_{\mathscr{P},u}(f_B) = \frac{1}{3}$	$\underline{EU}_{\mathscr{P},u}(f_{RY}) = \frac{2}{3}$

A sequential game with ambiguity

Consider the following game:

- 1. toss a coin;
- a ball is drawn from an Ellsberg's urn (¼ of red balls, ¼ of black or yellow balls):
 - a. if the coin comes up heads, then bet on red or black
 - b. if the coin comes up tails, then bet on red or yellow
- 3. if the guess is wrong, then win 0, otherwise win 1- ε if red, 1 if another color.

Decision tree with ambiguity



Related works

Two research directions:

 assume dynamic feasibility [Kikuti et al., 2011] (seeking a strategy returned by rolling back the decision tree): strategy followed by consequentialist decision maker, i.
a DM whose present decision does not depend on the past nor on what she planned to do when making her first decision.

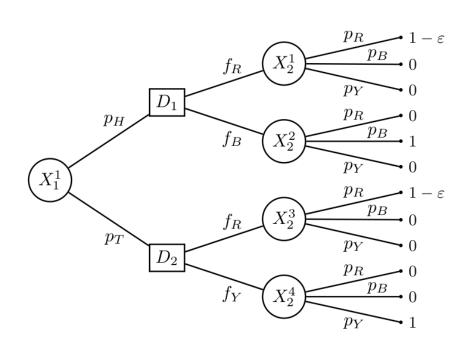
Pros: appealing from an algorithmic viewpoint

Cons: it may return a dominated strategy [Hammond, 1988]

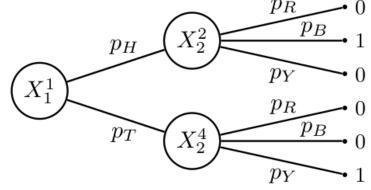
 follow a resolute choice approach [McClennen, 1990]: commit to an initial strategy and never deviate later

Huntley and Troffaes [2008] proposed a generic method.

Evaluating a strategy



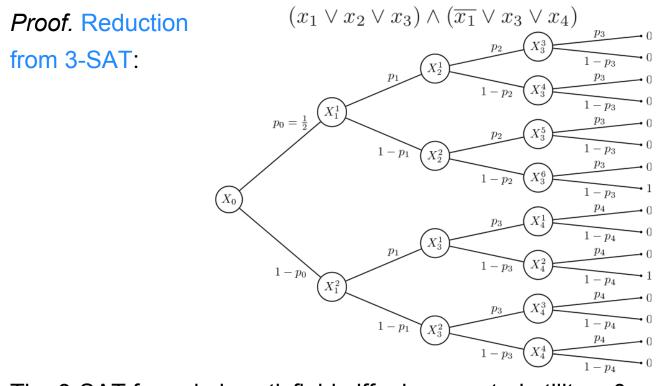
Evaluating strategy $(D_1 = f_B, D_2 = f_Y)$ amounts to evaluate compound lottery:



with $p_{H} = \frac{1}{2}$, $p_{T} = \frac{1}{2}$, $p_{R} = \frac{1}{3}$ and $p_{B} + p_{Y} = \frac{2}{3}$.

Evaluating a strategy

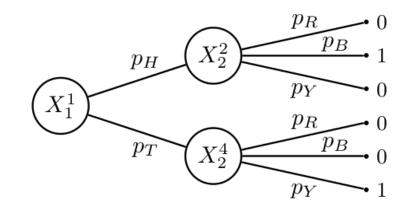
Proposition. Evaluating a strategy according to its min expected utility is an NP-hard problem, even if all non-degenerated probability intervals are [0,1].



The 3-SAT formula is satisfiable iff min expected utility = 0.

Evaluating a strategy

The evaluation of a compound lottery can be done via a mathematical programming formulation, with one variable for each instanciation of $X = \langle X_1, ..., X_n \rangle$:

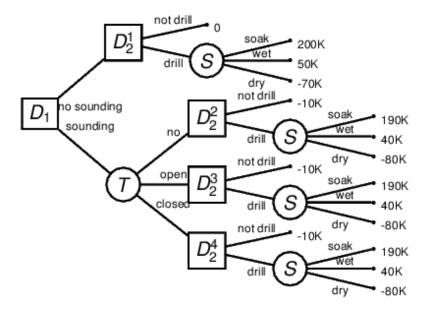


$$\min_{\mathsf{P}\in\mathscr{P}}\mathsf{P}(\mathsf{X}_1=\mathsf{H},\mathsf{X}_2=\mathsf{B})+\mathsf{P}(\mathsf{X}_1=\mathsf{T},\mathsf{X}_2=\mathsf{Y})$$

where \mathscr{P} denotes the set of possible probability measures over the considered decision tree.

Characterizing set *P*: main difficulty

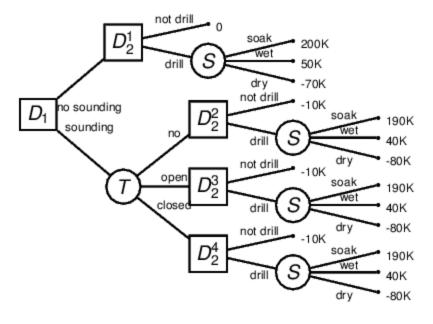
Oil wildcatter problem



P(S T)	dry	wet	soak
no	[0.500,0.666]	[0.222,0.272]	[0.125,0.181]
open	[0.222,0.333]	[0.363,0.444]	[0.250,0.363]
closed	[0.111,0.166]	[0.333,0.363]	[0.454,0.625]
T	no	open	closed
P(T)	[0.181,0.222]	[0.333,0.363]	[0.444,0.454]
S	dry	wet	soak
S P(S)	dry [0.214,0.344]	wet [0.309,0.386]	soak [0.307,0.456]

Characterizing set *P*: main difficulty

Oil wildcatter problem



P(S T)	dry	wet	soak
no	0.55	[0.222,0.272]	[0.125,0.181]
open	0.33	[0.363,0.444]	[0.250,0.363]
closed	0.12	[0.333,0.363]	[0.454,0.625]
Т	no	open	closed
P(T)	0.20	0.35	0.45
S	dry	wet	soak
P(S)	0.22	[0.309,0.386]	[0.307,0.456]

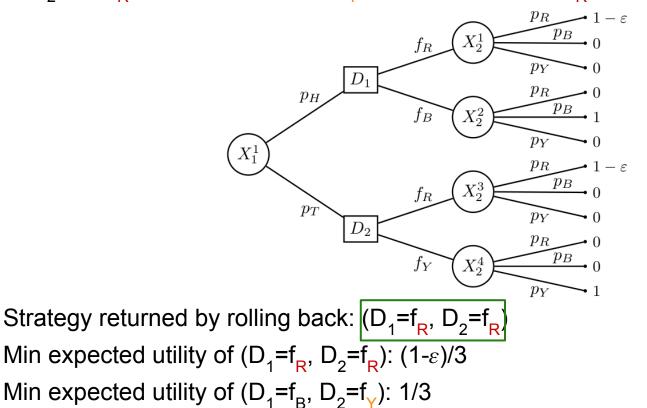
The total probability theorem does not hold:

 $P(S = dry | T = no)P(T = no) + P(S = dry | T = open)P(T = open) + P(S = dry | T = closed)P(T = closed) = 0.2795 \neq 0.22 = P(S = dry)$

Selecting a strategy

The optimality principle does not hold:

In D₁: EU(f_R) = (1-ε)/3 > 0 = EU(f_B) ⇒ the DM prefers f_R In D₂: EU(f_R) = (1-ε)/3 > 0 = EU(f_Y) ⇒ the DM prefers f_R



Selecting: separable case

Separable decision tree. For each chance node X_i^j , we denote by \mathcal{P}_i^j the set of conditional probability distributions over $X_i | past(X_i^j)$ that satisfies constraints \mathcal{C}_i^j . A decision tree \mathcal{T} is called *separable* (or *separately specified*, Kikuti *et al.*, 2011) if $\mathcal{P}_{\mathcal{T}} = \prod_{X_i^j \in \mathcal{N}_C} \mathcal{P}_i^j$.

The optimal strategy can be computed by rolling back the decision tree. It involves the solution of a (small) linear program at each chance node, where the variables are the conditional probabilities.

Selecting: non-separable case

Dominance relation. A strategy s dominates s' if: $\forall P \in \mathscr{P}, EU_{P,u}(s) \le EU_{P,u}(s').$

Dominance test: mathematical programming.

If s dominates s', then $\underline{EU}_{\mathcal{P},u}(s) \leq \underline{EU}_{\mathcal{P},u}(s')$.

Two-phases approach:

- 1. Compute the set ND of non-dominated strategies by rolling back the decision tree [Huntley & Troffaes, 2008]
- 2. Determine an optimal strategy in ND

Numerical tests

Separable decision trees (times in sec.)				
$h \setminus d$	3		4	
	# nodes	time	# nodes	time
8	2073	< 1	5851	< 1
10	12441	< 1	46811	< 1
12	74639	1.2	374491	5.7
14	447897	7.8	2995931	65.5
16	2687385	57.3	X	Х
18	Х	Х	Х	Х

h: depth of the decision tree; *d*: outdegree of chance nodes.

Non-separable decision trees (times in sec.)

h	8		1	10	
$n \setminus w$	0.05	0.1	0.05	0.1	
7	< 1	< 1	22.0	23.0	
8	1.4	2.0	51.6	58.0	
9	2.2	2.4	114.9	142.3	
10	4.3	4.6	253.6	328.1	
11	7.4	7.7	590.7	Х	
12	14.3	17.8	Х	Х	
ND	5	8	29	32	

n: number of random variables; *w*: imprecision degree; *ND*: average size of the non-dominated set.

Algorithms implemented in C++. CPLEX solved used to solve the mathematical programs. Numerical tests performed on a Pentium IV 2.13Ghz CPU computer, 3GB RAM

Research directions

- Use credal networks to define set \mathscr{P} .
- Extend to influence diagrams with imprecise probabilities
- Resolute choice with selves [Jaffray & Nielsen, 2006]:

Consider each decision node as a self and search for a compromise between the selves More specifically: define a regret for each self, and compute a strategy that optimizes an aggregation of the regrets.

Thank you