Resolute choice in sequential decision problems with multiple priors

Hélène Fargier, Gildas Jeantet et Olivier Spanjaard IMPRECISE PROBABILITIES WORKSHOP Toulouse, May 29th, 2015

Sequential decision-making under uncertainty

- Consequences of actions are dependent on states of the world
- Applications : medical diagnosis, troubleshooting under uncertainty, poker-playing program, etc.
- Graphical models :
	- decision trees (Raiffa, 1968)
	- influence diagrams (Shachter, 1986)
	- MDPs (Dean *et al.*, 1993; Kaebling et al., 1999)
- Sometimes hard to elicit sharp probabilities (several experts, missing data)

Need for models and algorithms for dealing with imprecise probabilities $2/19$

Expected utility model

Ambiguity: Ellsberg's example

Ellsberg's urn: ⅓ of red balls, ⅔ of black or yellow balls.

Usually: $f_R>f_B$ and f_{BY} \rightarrow f_{RY} There exists no probability P and utility function u such that: $\mathsf{EU}_{\mathsf{P},\mathsf{u}}(\mathsf{f}_{\mathsf{R}})\text{-}\mathsf{EU}_{\mathsf{P},\mathsf{u}}(\mathsf{f}_{\mathsf{B}})$ and $\mathsf{EU}_{\mathsf{P},\mathsf{u}}(\mathsf{f}_{\mathsf{B}\mathsf{Y}})\text{-}\mathsf{EU}_{\mathsf{P},\mathsf{u}}(\mathsf{f}_{\mathsf{R}\mathsf{Y}})$

Min expected utility model

Multiple priors

The underlying probability measure P could be any probability in the set:

 \mathscr{P} = { P : P(Red)=½, P(Black or Yellow)=½ }

Min expected utility (Gilboa & Schmeidler, 1989)

Most DM do use the EU model, but on the basis of the whole *set* of priors. They maximize the min, over \mathscr{P} , of the possible values of EU:

$$
\underline{\mathsf{EU}}_{\mathscr{P},\mathsf{u}}(\mathsf{f}) = \mathsf{min}_{\mathsf{P}\in\mathscr{P}} \mathsf{EU}_{\mathsf{P},\mathsf{u}}(\mathsf{f})
$$

Back to Ellsberg's example

Ellsberg's urn: ⅓ of red balls, ⅔ of black or yellow balls.

A sequential game with ambiguity

Consider the following game:

- 1. toss a coin;
- 2. a ball is drawn from an Ellsberg's urn (⅓ of red balls, ⅔ of black or yellow balls):
	- a. if the coin comes up heads, then bet on red or black
	- b. if the coin comes up tails, then bet on red or yellow
- 3. if the guess is wrong, then win 0, otherwise win 1- ε if red, 1 if another color.

Decision tree with ambiguity

Related works

Two research directions:

• assume dynamic feasibility [Kikuti et al., 2011] (seeking a strategy returned by rolling back the decision tree): strategy followed by consequentialist decision maker, i. e. a DM whose present decision does not depend on the past nor on what she planned to do when making her first decision.

Pros: appealing from an algorithmic viewpoint

Cons: it may return a dominated strategy [Hammond, 1988]

follow a resolute choice approach [McClennen, 1990]: commit to an initial strategy and never deviate later

Huntley and Troffaes [2008] proposed a generic method.

Evaluating a strategy

Evaluating strategy $(D_1 = f_B, D_2 = f_Y)$ amounts to evaluate compound lottery: p_R - 0

with $p_H = \frac{1}{2}$, $p_T = \frac{1}{2}$, $p^P_B = \frac{1}{3}$ and $p^P_B + p^P_A = \frac{1}{3}$.

Evaluating a strategy

Proposition. Evaluating a strategy according to its min expected utility is an NP-hard problem, even if all non-degenerated probability intervals are [0,1].

11/19

Evaluating a strategy

The evaluation of a compound lottery can be done via a mathematical programming formulation, with one variable for each instanciation of X= $\langle X_{1},...,X_{n}\rangle$:

$$
min_{P \in \mathcal{P}} P(X_1 = H, X_2 = B) + P(X_1 = T, X_2 = Y)
$$

where $\mathscr P$ denotes the set of possible probability measures over the considered decision tree.

Characterizing set ᭔ **: main difficulty**

Oil wildcatter problem

Characterizing set ᭔ **: main difficulty**

Oil wildcatter problem

The total probability theorem does not hold:

 $P(S = dry | T = no)P(T = no) + P(S = dry | T = open)P(T = open) + P(S =$ $dry|T = closed$ $P(T = closed) = 0.2795 \neq 0.22 = P(S = dry)$

Selecting a strategy

The optimality principle does not hold:

In D₁: EU(f_R) = (1- ε)/3 > 0 = EU(f_B) \Rightarrow the DM prefers f_R In D₂: EU(f_R) = (1- ε)/3 > 0 = EU(f_Y) \Rightarrow the DM prefers f_R

Selecting: separable case

Separable decision tree. For each chance node X_i^j , we denote by \mathcal{P}_i^j the set of conditional probability distributions over $X_i|past(X_i^j)$ that satisfies constraints C_i^j . A decision tree $\mathcal T$ is called separable (or separately specified, Kikuti et al., 2011) if $\mathcal{P}_{\mathcal{T}} = \prod_{X_i^j \in \mathcal{N}_C} \mathcal{P}_i^j.$

Example: sequential variant of Ellsberg's urn with two distinct Ellsberg's urns.

The optimal strategy can be computed by rolling back the decision tree. It involves the solution of a (small) linear program at each chance node, where the variables are the conditional probabilities.

Selecting: non-separable case

Dominance relation. A strategy s dominates s' if: \forall P $\in \mathscr{P}$, EU_{P u}(s) \leq EU_{P u}(s').

Dominance test: mathematical programming.

If s dominates s', then $\underline{\mathsf{EU}}_{\mathscr{P},\mathsf{u}}(\mathsf{s}) \le \underline{\mathsf{EU}}_{\mathscr{P},\mathsf{u}}(\mathsf{s}').$

Two-phases approach:

- 1. Compute the set ND of non-dominated strategies by rolling back the decision tree [Huntley & Troffaes, 2008]
- 2. Determine an optimal strategy in ND

Numerical tests

h: depth of the decision tree; d: outdegree of chance nodes.

Non-separable decision trees (times in sec.)

h			10	
w $\it n$	0.05	0.1	0.05	0.1
	< 1	< 1	22.0	23.0
8	1.4	2.0	51.6	58.0
9	2.2	2.4	114.9	142.3
10	4.3	4.6	253.6	328.1
11	7.4	7.7	590.7	X
12	14.3	17.8	X	X
ND	5	8	29	32

 $n:$ number of random variables; $w:$ imprecision degree; ND: average size of the non-dominated set.

18/19

Algorithms implemented in C++. CPLEX solved used to solve the mathematical programs. Numerical tests performed on a Pentium IV 2.13Ghz CPU computer, 3GB RAM

Research directions

- \bullet Use credal networks to define set \mathscr{P} .
- Extend to influence diagrams with imprecise probabilities
- Resolute choice with selves [Jaffray & Nielsen, 2006]:

Consider each decision node as a self and search for a compromise between the selves More specifically: define a regret for each self, and compute a strategy that optimizes an aggregation of the regrets.

Thank you