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Outline

Bayesian Networks

Parametric learning in Bayesian networks

Credal networks. Learning the parameters

Imprecise Dirichlet Model (IDM)
Imprecise Sample Size Dirichlet Model (ISSDM)
Likelihood based inference for learning the parameters

Structure learning of Bayesian networks.

Credal networks. Learning the structure.
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Bayesian Networks

Definition

A Bayesian network for a set of variables (X1, . . . ,Xm) is a pair
(G ,Π) where G is a directed acyclic graph with a node for each
variable Xi and Π is a list of conditional probability distributions
P(X1|Pa1), . . . ,P(Xm|Pam), one for each variable given its parents
in G .

Meaning

The graph G encodes a set of independent relationships: each
variable Xi is independent of its non-descendent variables
given its parents.

The Bayesian network encodes the joint probability
distribution:

P(X1, . . . ,Xm) =

m
∏

i=1

P(Xi |Pai )
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Example

Visit Asia

Tuberculosis

Tuberc. or Lung
Cancer

X Ray

Smoking

Lung Cancer

Bronchitis

DyspnoeaCough
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Example

Visit Asia

Tuberculosis

Tuberc. or Lung
Cancer

X Ray

Smoking

Lung Cancer

Bronchitis

DyspnoeaCough

Smoker = yes Smoker = no

LungCancer = yes 0.1 0.01
LungCancer = no 0.9 0.99

S. Moral University of Granada - Spain Likelihood Based Methods for Learning of Credal Networks



Conditional Distributions

X1 X2

X3

P(X1 = 0) 0.3
P(X1 = 1) 0.7

P(X2 = 0) 0.6
P(X2 = 1) 0.4

X1 = 0 X1 = 0 X1 = 1 X1 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

P(X3 = 0) 0.6 0.8 0.3 0.1
P(X3 = 1) 0.4 0.2 0.7 0.9
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Conditional Distributions: Parametrizations

X1 X2

X3

P(X1 = 0) θ111
P(X1 = 1) θ112

P(X2 = 0) θ211
P(X2 = 1) θ212

X1 = 0 X1 = 0 X1 = 1 X1 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

P(X3 = 0) θ311 θ321 θ331 θ341
P(X3 = 1) θ312 θ322 θ332 θ342

θi jk







i variable
j conditional distribution
k case of variable

The j − th conditional distribution for Xi

θij = (θij1, θij2)θij = (θij1, θij2)
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Learning Bayesian Networks

Learning in Bayesian networks can be defined as the process of
inducing a model from a database.
X1 X2 . . . Xm

x11 x12 . . . x1m
x21 x22 . . . x2m
x31 x32 . . . x3m
x41 x42 . . . x4m

X1 X2

X3

Xm
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Learning Bayesian Networks

Learning in Bayesian networks can be defined as the process of
inducing a model from a database.
X1 X2 . . . Xm

x11 x12 . . . x1m
x21 x22 . . . x2m
x31 x32 . . . x3m
x41 x42 . . . x4m

X1 X2

X3

Xm

Learning = Inducing a graph + Estimating parameters
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Learning Bayesian Networks: Parameter Estimation

Usually a Bayesian approach is considered

If prior distributions for the parameters of each conditional
distribution θij are independent and we do not have missing data,
then the posterior is also independent, and we can decompose the
problem in estimating each one of the conditional distributions θij .

Assume the following network and a sample size N

X1 X2

X3

N11 = N

P(X1 = 0) θ111
P(X1 = 1) θ112

N21 = N

P(X2 = 0) θ211
P(X2 = 1) θ211

N31 N32 N33 N34

X1 = 0 X1 = 0 X1 = 1 X1 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

P(X3 = 0) θ311 θ321 θ331 θ341
P(X3 = 1) θ312 θ322 θ332 θ342

∑

i N3i = N
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Parameter Estimation

Without missing values, it can be decomposed in the
estimation of a family of multinomial probabilities: one
distribution for each conditional probability of a variable given
a configuration or combination of values of its parents.

It is important to notice that if the number of parents increase
the sample size decreases (original sample splitted in an
exponential number of subsamples).

We shall now concentrate in the estimation of multinomial
probabilities.
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The Problem

We have a random variable X taking values on a finite set
U = {x1, . . . , xk}

Assume that P(X = xi) = θi

θ = (θ1, . . . , θk)

We have N observations (iid) of this random variable:
D = (d1, . . . , dN)

We want to estimate the parameters θi taking these
observations as basis
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Bayesian Models

Prior Density about the Parameter

Usually, a Dirichlet distribution D(α1, . . . , αk) with a density

f (θ1, . . . , θk) ∝ θα1−1
1 · · · θαk−1

k

where αi > 0.

αi : it is a weight for our prior belief in P(X = xi)

Equivalent Sample Size

The value s =
∑k

i=1 αi is called the equivalent sample size
(relative importance of prior weights with respect to sample size)
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Computational Advantages

Posterior Probability

If Ni is the number of occurrences of X = xi in D, then the
posterior density f (θ|D) is also a Dirichlet density of parameters
D(α1 + N1, . . . , αk + Nk)
where Ni is the number of observations of X = xi in the sample.

P(X = xi |D) = θ̂i = E [θi |D] =
Ni + αi

N + s

X = x1 X = x2 X = x3
α1 α2 α3
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Computational Advantages

Posterior Probability

If Ni is the number of occurrences of X = xi in D, then the
posterior density f (θ|D) is also a Dirichlet density of parameters
D(α1 + N1, . . . , αk + Nk)
where Ni is the number of observations of X = xi in the sample.

P(X = xi |D) = θ̂i = E [θi |D] =
Ni + αi

N + s

X = x1 X = x2 X = x3
α1 α2 α3

N1 N2 N3
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Computational Advantages

Posterior Probability

If Ni is the number of occurrences of X = xi in D, then the
posterior density f (θ|D) is also a Dirichlet density of parameters
D(α1 + N1, . . . , αk + Nk)
where Ni is the number of observations of X = xi in the sample.

P(X = xi |D) = θ̂i = E [θi |D] =
Ni + αi

N + s

X = x1 X = x2 X = x3
α1 α2 α3

N1 N2 N3

N1 + α1 N2 + α2 N3 + α3
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Computational Advantages

Posterior Probability

If Ni is the number of occurrences of X = xi in D, then the
posterior density f (θ|D) is also a Dirichlet density of parameters
D(α1 + N1, . . . , αk + Nk)
where Ni is the number of observations of X = xi in the sample.

P(X = xi |D) = θ̂i = E [θi |D] =
Ni + αi

N + s

X = x1 X = x2 X = x3
α1 α2 α3

N1 N2 N3

N1 + α1 N2 + α2 N3 + α3
N1+α1

N+s
N2+α2

N+s
N3+α3

N+s
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Prior ignorance: Symmetry. Objective Bayesian Models

Prior Ignorance: Symmetry Principle

Prior density is invariant under permutations:

α1 = · · · = αk = s/k ; P(X = ai |D) = θ̂i = E [θi |D] =
Ni + s/k

N + s

Haldane (1948): αi = 0, s = 0 (maximum likelihood)

Perks (1947): αi = 1/k , s = 1

Jeffreys (1946,1961): αi = 1/2, s = k/2

Bayes Laplace: αi = 1, s = k

Berger-Bernardo: reference priors

Important Parameter

Equivalent Sample Size (s): Relative importance of prior

information with respect to the sample
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Beta shapes

0 1

Beta(1,1)

Beta(2,2)

Beta(.5,.5)

Beta(3,2)

Beta(2,3)
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Some Difficulties

Main Problem

How to determine αi and the equivalent sample size (s)?
These values assume that the parameters are generated according
to some distributions.
If the real parameters have low density, the results can be poor.

Representation Invariance Principle (RIP)

Inferences should not depend on refinements or coarsenings of
categories: if a category xi is changed, the estimation of the
probabilities of unchanged categories should be the same.

S. Moral University of Granada - Spain Likelihood Based Methods for Learning of Credal Networks



Experiment

We generate samples of size 10 according to a symmetric Beta (α
real) and estimate with another Beta (α estimated). We compute
the expected log of the estimated values with respect to the real
parameter.
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Going Back to Bayesian Networks

qi number of conditional distributions of variable Xi

ki number of values of variable Xi

In a Bayesian network, the problem is more important, as the
determination of sij for each distribution θij can depend on
the number of conditional distributions of Xi given its parents.

We have to ways of selecting the parameters:

The local approach: Each αijk is selected with independence of
qi and ki
The global approach: Each αijk depends of qi and ki
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The Local Approach: An uniform α

X1 X2

X3

P(X1 = 0) α
P(X1 = 1) α

P(X2 = 0) α
P(X2 = 1) α

X1 = 0 X1 = 0 X1 = 1 X1 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

P(X3 = 0) α α α α
P(X3 = 1) α α α α

It is the most usual approach in practice (α = 1, Laplace
correction)

It is not considered correct, as equivalent networks
(representing the same conditional independence
relationships) give rise to different estimations.
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The Global Approach: different αijk

It assumes a global Dirichlet distribution for all the variables

X1 X2

X3

P(X1 = 0) α111

P(X1 = 1) α112

P(X2 = 0) α211

P(X2 = 1) α212

X1 = 0 X1 = 0 X1 = 1 X1 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

P(X3 = 0) α311 α321 α331 α341

P(X3 = 1) α312 α322 α332 α342

Some linear restrictions should be satisfied:
∑

j

α31j +
∑

j

α32j = α111,
∑

j

α33j +
∑

j

α34j = α112

∑

j

α31j +
∑

j

α33j = α211,
∑

j

α32j +
∑

j

α34j = α212
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The Global Approach: different αijk

Under symmetry αijk = αijk′

X1 X2

X3

P(X1 = 0) s/2
P(X1 = 1) s/2

P(X2 = 0) s/2
P(X2 = 1) s/2

X1 = 0 X1 = 0 X1 = 1 X1 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

P(X3 = 0) s/8 s/8 s/8 s/8
P(X3 = 1) s/8 s/8 s/8 s/8

s the global equivalent sample size

αijk = s
kiqi

, where

ki number of values of Xi

qi number of configurations of parents of Xi (exponential in
the number of parents)
sij =

s
qi

is the equivalent sample size for conditional
distributions of Xi
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Difficulty

X1 X2 X3 Xm

Y

Binary Variables

If we consider an equivalent sample size of S = 2, then the
marginal distributions about Xi is D(1, 1) and the conditional
distr. are D(1/2m, 1/2m).

It is possible that the sample with which we have estimated
P(y |x) is very short and the Dirichlet parameters are low too:
very risky estimation.
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The Imprecise Dirichlet Model

Introduced by Walley(1996)

Based on Imprecise Probability: it considers a set P of prior
densities

Updating is done by applying Bayes rule to each one of the
densities in P.
P|D = {f (.|D) : f ∈ P}

Imprecise Dirichlet Model: Prior Information

s: Equivalent sample size.

P = {D(α1, . . . , αk) :

k
∑

i=1

αi = s, αi > 0}
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The Imprecise Dirichlet Model: Inferences

Imprecise Dirichlet Model: Prior Information

P = {D(α1, . . . , αk) :

k
∑

i=1

αi = s, αi > 0}

Imprecise Dirichlet Model: Inferences

P(X = xi |D) ∈ [P(θi |D),P(θi |D)] =

[

Ni + 0

N + s
,
Ni + s

N + s

]

s = 1 x1 x2 x3
Ni 3 4 0

Interv. [3/8,4/8] [4/8,5/8] [0,1/8]
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Example

Imagine that we have an urn with balls of different colors: red (R),
blue (B), and green (G); but on an unknown quantity.

Assume that we picked up balls with replacement, with the
following sequence: (B ,B ,R ,R ,B).

If we assume an imprecise Dirichlet ’a priori’ distribution with
s = 3, then the estimated intervals for red, blue, and green are:

R B G

Ni 2 3 0

Int. [2/8,5/8] [3/8,6/8] [0, 3/8]

Bayesian (Laplace) 3/8 4/8 1/8
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Some properties

Properties

If N = 0 the interval is [0, 1]

The interval width is s/(s +N) converging to 0 as N increases

It satisfies the representation invariance principle

When a category, for example B is divided between Dark Blue
(B1) and Light Blue (B2), then the probability of red
continues being [2/8, 5/8]. With Bayesian estimation if with 4
categories, we consider D(0.75, 0.75, 0.75, 0.75), then the
estimation of the probability of Red changes!

S. Moral University of Granada - Spain Likelihood Based Methods for Learning of Credal Networks



Credal Networks: Imprecise Probabilities in Bayesian
Networks

Credal Network, Cozman (2000)

It is a graph G and a set of probability distributions P such that each
P ∈ P factorices according to G :

P(x) =
∏

i

Pi(xi |Pai )

Separately Specified Credal Network, Cozman (2000)

It is a graph G and a set of probability distributions for each variable Xi

and each possible value of each of its parents

X1 X2

X3

P(X1 = 0) [3/8,4/8]
P(X1 = 1) [4/8,3/8]

P(X2 = 0) [1/8,2/8]
P(X2 = 1) [6/8,7/8]

X1 = 0 X1 = 0 X1 = 1 X1 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

P(X3 = 0) [1/2,1] [1/3,2/3] [0,1] [1/5,2/5]
P(X3 = 1) [0,1/2] [1/3,2/3] [0,1] [3/5,4/5]
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The Local Approach: IDM for each conditional distribution

An IDM for each conditional distribution:

X1 X2

X3

P(X1 = 0) α111

P(X1 = 1) α112

α111 + α112 = s

P(X2 = 0) α211

P(X2 = 1) α212

α211 + α212 = s

X1 = 0 X1 = 0 X1 = 1 X1 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

P(X3 = 0) α311 α321 α331 α341

P(X3 = 1) α312 α322 α332 α342

α3j1 + α3j2 = s

Proposed in Zaffalon (1999). We can estimate the intervals and
then make a computation in a credal network. The results were
too imprecise.
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Learning Parameters: Applying the IDM for each
conditional probability distribution

X1 X2

X3

Freq. (3,4)
P(X1 = 0) [3/8,4/8]
P(X1 = 1) [4/8,3/8]

Freq. (1,6)
P(X2 = 0) [1/8,2/8]
P(X2 = 1) [6/8,7/8]

X1 = 0 X1 = 0 X1 = 1 X1 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

Freq. (1,0) (1,1) (0,0) (1,3)
P(X3 = 0) [1/2,1] [1/3,2/3] [0,1] [1/5,2/5]
P(X3 = 1) [0,1/2] [1/3,2/3] [0,1] [3/5,2/5]

Intervals are wider if the number of parents increase.
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The Global Approach: IDM for the joint distribution

X1 X2

X3

P(X1 = 0) α111

P(X1 = 1) α112

α111 + α112 = s α211 + α212 = s

P(X2 = 0) α211

P(X2 = 1) α212

X1 = 0 X1 = 0 X1 = 1 X1 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

P(X3 = 0) α311 α321 α331 α341

P(X3 = 1) α312 α322 α332 α342

With the additional linear restrictions:
∑

j

α31j +
∑

j

α32j = α111,
∑

j

α33j +
∑

j

α34j = α112

∑

j

α31j +
∑

j

α33j = α211,
∑

j

α32j +
∑

j

α34j = α212
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The Global IDM

It is more restrictive: smaller intervals.

It was proposed in Zaffalon (2002).

It is more difficult from a computational point of view: you
can not compute the intervals and forget the alphas. You
have to optimize in the alphas.

Locally it behaves as the local IDM: it is not necessary to
divide the global sample size among the number of conditional
distributions. The possible intervals for the local conditional
distributions are the same than in the local model. The only
difference is that there are restrictions between the
probabilities of the different conditional distributions.
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Global IDM

It applies the IDM assuming it for the set of parameters of the
joint distribution. Given s, we have to compute all the probability
distributions:

X1 X2

X3

Freq. (3, 4)
P(X1 = 0) (3 + α111)/(7 + s11)
P(X1 = 1) (4 + α121)/(7 + s11)

Freq. (1, 6)
P(X2 = 0) (1 + α211)/(7 + s21)
P(X2 = 1) (6 + α221)/(7 + s21)

X1 = 0 X1 = 0 X1 = 1 X1 = 1
X2 = 0 X2 = 1 X2 = 0 X2 = 1

Freq. (1,0) (1,1) (0,0) (1,3)
P(X3 = 0) (1 + α311)/(1 + s31) (1 + α321)/(2 + s32) (1 + α331)/(2 + s33) (1 + α341)/(2 + s34)
P(X3 = 1) (0 + α311)/(1 + s31) (1 + α321)/(2 + s32) (1 + α331)/(2 + s33) (1 + α341)/(2 + s34)

Constraints:
∑

k αijk = sij ,
∑

j sij = s, s31 + s32 = α111, s33 + s34 = α112, . . .
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Global IDM

It applies the IDM assuming it for the set of parameters of the
joint distribution. Given s, we have to compute all the probability
distributions:

X1 X2

X3

Freq. (3, 4)
P(X1 = 0) (3 + α111)/(7 + s11)
P(X1 = 1) (4 + α121)/(7 + s11)

Freq. (1, 6)
P(X2 = 0) (1 + α211)/(7 + s21)
P(X2 = 1) (6 + α221)/(7 + s21)

X1 = 0 X1 = 0 X1 = 1 X1 = 1
X2 = 0 X2 = 1 X2 = 0 X2 = 1

Freq. (1,0) (1,1) (0,0) (1,3)
P(X3 = 0) (1 + α311)/(1 + s31) (1 + α321)/(2 + s32) (1 + α331)/(2 + s33) (1 + α341)/(2 + s34)
P(X3 = 1) (0 + α311)/(1 + s31) (1 + α321)/(2 + s32) (1 + α331)/(2 + s33) (1 + α341)/(2 + s34)

Constraints:
∑

k αijk = sij ,
∑

j sij = s, s31 + s32 = α111, s33 + s34 = α112, . . .

If we are interested only in one conditional: P(X3 = 0|0, 0) ∈ [1/2, 1]
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The IDM: drawbacks

Piatti, Zaffalon, 2007: No learning from indirect observations

If O is a set of observations defining a strictly positive and
continuous likelihood function on θ, l(.|O), then for any prior
model in θ defined by a credal set P for which the interval
[P(xi ),P(xi )] = [0, 1] before the observations, we have that after
the observations [P(xi |o),P(xi |o)] = [0, 1]
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No Learning

D1 D2 D3 D4 Dn X

θ

O1 O2 O3 O4 On

If we do not observe Di = di but we have an indirect
observation system:

P(Oi = oi |Di = di) =

{

1− ǫ, if oi = di
ǫ/(k − 1) otherwise

Even if we observe o = (o1, . . . , o1000) with oi = x1, ∀i ,
[P(X = xi |o),P(X = xi |o)] = [0, 1]
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The Learning Principle

Statement

An imprecise prior information P about a parameter set Θ satisfies the
learning principle if and only if for any measurable set A ⊆ Θ with
|A| > 0 and any sequence of likelihood functions {ln} such that

inf{ln(θ) : θ ∈ A}

sup{ln(θ) : θ ∈ Θ \ A}
−→ +∞

then P(A|ln) −→ 1.
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The Learning Principle

Statement

An imprecise prior information P about a parameter set Θ satisfies the
learning principle if and only if for any measurable set A ⊆ Θ with
|A| > 0 and any sequence of likelihood functions {ln} such that

inf{ln(θ) : θ ∈ A}

sup{ln(θ) : θ ∈ Θ \ A}
−→ +∞

then P(A|ln) −→ 1.

Equivalence

An imprecise prior information P about a parameter set Θ satisfies the
learning principle if and only if A ⊆ Θ with |A| > 0: P(A) > 0 (under
coherence conditioning).

In the binary case (IDM),P([a, b]) = 0, except for the trivial interval
[0, 1].
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The Bounded IDM

The IDM does not satisfies the learning principle. In fact P([a, b]) = 0,
except for the trivial interval [0, 1].
The bounded IDM assumes the set of prior probabilities:

P = {D(α1, . . . , αk) :

k
∑

i=1

αi = s, αi > t}

It satisfies the learning principle but fails to verify RIP.

Result

There is no coherent prior model P such that verifies RIP, symmetry and
learning principles.
The learning principle implies that without observations
P(X = ai) ∈ [a, b] with a > 0, b < 1.
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The Bounded IDM

The IDM does not satisfies the learning principle. In fact P([a, b]) = 0,
except for the trivial interval [0, 1].
The bounded IDM assumes the set of prior probabilities:

P = {D(α1, . . . , αk) :

k
∑

i=1

αi = s, αi > t}

It satisfies the learning principle but fails to verify RIP.

Result

There is no coherent prior model P such that verifies RIP, symmetry and
learning principles.
The learning principle implies that without observations
P(X = ai) ∈ [a, b] with a > 0, b < 1.

What is more important RIP or learning?
In Moral (2012) I give reasons in favor of learning.
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Reasons for Learning against RIP

The specification of the problem is relevant information.

The number of values of a variable can also be learned: some
are better than others (see for example discretization).

We want to be vacuous in the predictions of next outcome
under no observations, but we are not being vacuous about
the parameter space.

Betting interpretation: without observations, there is not an
amount of money z such that we are ready to pay 1 to get z
if X = x .
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The Imprecise Sample Size Dirichlet Model (ISSDM)

P = {D(s/k , . . . , s/k) : s1 ≤ s ≤ s2}

Identical weights for all the cases, but imprecise equivalent sample
size.

Introduced by Walley (1990) in his book as an example (but
without real practical interest)

Imprecision orthogonal to the one in the IDM

Sudied in Masegosa, Moral (2014)

ISSDM: Prior Information

P(X = xi |D) ∈ [P(θi |D),P(θi |D)] =







[

Ni+s1/k
N+s1

, Ni+s2/k
N+s2

]

if Ni/N < 1/k
[

Ni+s2/k
N+s2

, Ni+s1/k
N+s1

]

otherwise
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Comparison IDM - ISSDM

Under no information N = 0, it produces precise (uniform)
estimations of the probability: P(X = ai ) = 1/k

Imprecision appears as deviations of the uniform distribution
in relative frequencies.
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Example

Comparison of results, ISSDM (s1 = 1, s2 = 2) IDM (s = 1) binary
variable and approximate intervals
Imagine that we observe 20% of cases for a1 against 80% for a2.
Interval probabilities:
N 5 10 100 1000

IDM a1 [0.17,0.33] [0.18,0.27] [0.198,0.208] [0.200,0.201]
IDSSM a1 [0.25,0.28] [0.23, 0.25] [0.203,0.208] [0.200,0.201]

If we observe 50% of the cases a1
N 5 10 100 1000

IDM a1 [0.42,0.58] [0.45,0.56] [0.495,0.505] [0.499,0.501]
IDSSM a1 0.5 0.5 0.5 0.5
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Likelihood Inference

The problem of IDM (bivariate case):

In the indirected observation problem, if we observe
o = (o1, . . . , o1000) with oi = x1, ∀i ,
[P(X = xi |o),P(X = xi |o)] = [0, 1]

The lower limit comes from prior densities D(α1, α2) with very low
α1.

The likelihood of parameters θ given the observations is:

L(θ) =

1000
∏

i=1

((1− ǫ)θ + ǫ(1− θ))

This likelihood is concentrated in high values of θ.

With low α1 the density is concentrated in low values of θ.

Given a low value of α1 the probability of the data is very small.
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Likelihood Inference

0 1

High α1

Low α1

Likelih.

There is a likelihood associated to each density, which is small for
small α1 and large for large α1. The ’non-learning’ problem comes
from not taking it into account.
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Likelihood Based Inference

Assume a multinomial variable X , and a set of densities on
(θ1, . . . , θk),

P = {fr |r ∈ R}

Each set of data D defines a likelihood in the set of densities:

L(r |D) = P(D|fr ) =

∫

θ
fr (θ)P(D|θ)dθ

How to use this density?
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Alternatives

Second order model: likelihood on R and probabilities given r

(Cattaneo, 2012).

To consider the likelihood as defining a possibility measure,
Cano, Moral Verdegay-López (1991) Moral (1992)
(probabilities defined on finite sets).

Define upper and lower probabilities on R . P. Walley and S.
Moral (1999) “Upper Probabilities Based Only in the
Likelihood Function.” (finite sets)

To use pure likelihood based intervals (α-cut updating rule,
Cattaneo, 2014) A thereshold γ is selected and after some
data D we compute: rmax = argmaxr L(r |D) and the
conditional information is given by

PD = {fr (.|D)|r ∈ R , L(r |D) ≥ γL(rmax |D)}
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The α-cut Updating Rule

Cattaneo (2014)

It is the only continuous updating rule.

0 1

γ

RD
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Possible Prior Densities

The IDM

P = {D(α1, . . . , αk) :

k
∑

i=1

αi = s, αi > 0}

The ISSDM

P = {D(s/k , . . . , s/k) : s1 ≤ s ≤ s2}

The degenerated model

P = {fθ : θ ∈ Θ}

where fθ is the density degenerated in θ.
Cattaneo (2014) and Antonucci, Cattaneo, Corani (2012)
consider the last case

In all of them, the learning principle is satisfied (with the α-cut
conditioning rule).
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Experimental Comparison

We have carried out some experiments in which we aim to
compare the likelihood based results with Bayesian procedures.

We select a parameter (θ ∈ Θ) (according a Dirichlet
D(αr , αr )).

10000 samples of size 10 are obtained.

For each one of them we make an estimation of the
probability Q.

The goodness of the approximation is measured with
Eθ[log(Q)].
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Experimental Comparison (II)

We have used the degenerated model.

With this, we obtain a set of possible values for the parameters
ΘD ⊆ Θ.

How to compare an imprecise procedure with an imprecise one? We
select one of the parameters from ΘD and compare this parameter
with the Bayesian procedure.

To select only one value Q from ΘD we select the one giving rise to
a probability with maximum entropy (it can be justified as a
max-min decision rule with log(Q) as utility.
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Results

Blue is Laplace

Red is imprecise + maximum en-
tropy

If the way of generating cases
is similar to the hypothesis done
by Laplace (α = 1), then blue
is better, but if we are far from
this, red is better
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Results
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Applying Likelihood Inference to Learn Credal Networks

We have to apply it to each one of the conditional distributions.

We can use global and local models.

Let R the global set of parameters and Rij the set of parameters for the
conditional distribution of Xi given that Pai = πj .

If we have a local model: R is given through Rij .

If data are complete, we have separation, in the following sense

L(R|D) =
∏

ij

L(Rij |D)

When this happens there are 3 possible approaches for α-cut conditioning:

1 Global: to apply α-cut conditioning to the global likelihood
distribution

2 Local: to apply α-cut conditioning to each one of the
parameters, considering that the set of possible parameters is
the Cartesian product.

3 To apply α-cut conditioning to the global likelihood
distribution, but descreasing the thereshold γ to γ l where l is
the number of parameters (Pawitan, “In all likelihood”)
(Akaike Information criterion calibration).
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Graphical View

With 2 parameters:

Global - Freq.

Global

bM.L.

Local

The global one is the most informative. I believe that it is the one
that could provide sensible results without producing too wide
intervals as result of inference. Resulting credal networks are not
separately specified.
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Learning: Structure

Score + Search procedures

Search for the graph maximizing a metric or score measuring how
good is a graph for the data.

Bayesian Score

P(G |D) =
P(D|G ).P(G )

P(D)

Under certain conditions (uniform prior on the graphs, prior
Dirichlet densities about the parameters, independence on the
parameters) there is a closed expression to compute the score from
the data D.

P(G |D) ∝

m
∏

i=1

qi
∏

j=1

Γ(kiαij)

Γ(Nij + kiαij)

ki
∏

k=1

Γ(αij + Nijk)

Γ(αij )
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Bayesian Score: Local vs Global Application

Local Score. K2 Score: D(1, . . . , 1)

P(G |D) ∝

n
∏

i=1

qi
∏

j=1

Γ(ki )

Γ(Nij + ki )

ki
∏

k=1

Γ(1 + Nijk)

Γ(1)

Global Equivalent Sample Size: D(s/(qi .ki ), . . . , s/(qi .ki ))

P(G |D) ∝

n
∏

i=1

qi
∏

j=1

Γ(s/qi )

Γ(Nij + s/qi )

ki
∏

k=1

Γ(s/(qi .ki ) + Nijk)

Γ(s/(qi .ki ))

The global model gives rise to the BDEu the most used criterion
for learning Bayesian networks.
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Some Properties

Evolution of the score as a function of the number of parents:

Evolution of the score as a function of the number of parents and
different s values: s = 0.01 (blue), s = 2 (red), s = 20 (green)
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Bad Behaviour

If we have deterministic distributions, we can have examples of
wrong behaviour:
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Imprecise Methods to Learn the Structure (old approach)

Generalized Credal Networks

A set of graphs with imprecise probabilities each one of them.

A precise Bayesian procedure is based on a function F that assigns
to each graph G a family of prior distributions for each variable
given its parents: F (G)ij is the prior probability of Xi conditioned to
the j-th value of its parents. Example
Fs(G)ij = D(s/(qi .ki), . . . , s/(qi .ki)).

An imprecise procedure can be based on a family F of assignment
functions. Example F = {Fs | s ∈ {s1, . . . , sn}}

The set of learned graphs would be the set of graphs that are
optimal for the different functions F ∈ F (E-admissibility).
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IDM Applied to Learn Structure

We have as family of assignments F , where each F ∈ F is
determined for each one of the prior global Dirichlet
distributions of the IDM: F (G )ij = D(αij1, . . . , αijki ) a set of
linear restrictions as

∑

jk αijk = s and other linear restrictions.

It is difficult from a computational point of view.

It is not useful
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IDM Applied to Learn Structure

Only applied to a very simple case:

A

B

A

B

Result

if all the cases have non null frequency: independence can not be
dominated by dependence.

The same reason for which the IDM does not satisfy the learning
principle has as consequence that IDM is not good for deciding about
dependence-independence.

Compromise

Assume a minimum value αijk (bounded IDM). Abellán and Moral (2005)
obtain good results to estimate the joint probability.
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ISSDM Applied to Learning the Structure

F = {Fs | s ∈ {s1, . . . , sn}}

Experimental Fact

Moral (2004,2005) T. Silander, P. Kontkanen, P. Myllymäki
(2007): the parameter s determines how dense is the learned
network: Small s values produce networks with a low number of
arrows and large values of s networks with more links

An Imprecise Search Approach with ISSDM

Build a network with the small bound s1 with a search
procedure and build the mimimal graph Gs1

Start using the score with s = s2 and apply a search taking Gs1

as basis (none of the links of this graph can be removed, and
a link of Gs1 can be inverted if its inversion in Gs1 produces an
equivalent graph). Then we build Gs2 as a supergraph of Gs1

The links in Gs1 are necessary and the links in Gs2 \ Gs1 are
possible
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Experiments: learning structure

Alarm, Boblo, Boelarge, Hailfinder, Insurance

The imprecise approach

Missing Edges s2 S-[1,4.0] S-[0.5,8] S-[0.25,16] S-2
100 16.7 15.08 13.26 18.18
500 9.94 9.24 8.48 11
1000 8.32 7.56 7.14 8.8
5000 5.26 5.02 4.64 5.44

Extra Edges s1 S-[1,4.0] S-[0.5,8] S-[0.25,16] S-2
100 12.44 11.16 10.7 16.08
500 6.02 4.94 4.92 8.12
1000 4.72 3.76 3.26 6.2
5000 1.68 1.28 1.2 2.84
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Experiments: learning structure

Number of sure errors S-[1,4.0] S-[0.5,8] S-[0.25,16] S-2
100 29.14 26.24 23.96 34.26
500 15.96 14.18 13.4 19.12
1000 13.04 11.32 10.4 15
5000 6.94 6.3 5.84 8.28

Num. Links IMPRECISE S-[1,4.0] S-[0.5,8] S-[0.25,16]
100 12.92 24.82 38.34
500 8.04 17.12 28.34
1000 5.52 14.06 24.18
5000 4.02 8.52 16.52
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The Likelihood Approach

The Model

A set of graphs G (usually the set of all the directed acyclic graphs) and
for each graph G a famility of prior densities P(G) for the distributions of
each variable given its parents.
Each element f ∈ P(G) assigns a prior distribution fij for the parameters
θij of each conditional variable Xi and the j-th combination of values of
its parents Pai = πj .

The Parameter Space

M = {(G , f ) |G ∈ G, f ∈ P(G)}

Local Models

A model is local when P(G) is determined by families of densities P(G)ij
of each variable given its parents.
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Examples

A global approach: a set of equivalent sample sizes is selected
S = {s1, . . . , sl} and P(G ) is given by the families f s such
that f sij is D(s/(kiqi ), . . . , s/(kiqi)) for s ∈ S .

A local approach: a set of weights is selected
A = {α1, . . . , αl} and P(G )ij is given by the densities
D(α, . . . , α), α ∈ A.

The local degenerated approach: P(G )ij is the set of
degenerated densities fθij , θij ∈ Θij .
In the local degenerated model the set of parameters is the set
of all the Bayesian networks
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Examples: a global model based on ISSDM

S = {s1, . . . , sl}. Dirichlet distributions

X1 X2

X3

P(X1 = 0) α111 = s/k1
P(X1 = 1) α112 = s/k1

P(X2 = 0) α211 = s/k2
P(X2 = 1) α212 = s/k2

X1 = 0 X1 = 0 X1 = 1 X1 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

P(X3 = 0) α311 = s/(k3q3) α321 = s/(k3q3) α331 = s/(k3q3) α341 = s/(k3q3)
P(X3 = 1) α312 = s/(k3q3) α322 = s/(k3q3) α332 = s/(k3q3) α342 = s/(k3q3)

Particular case: S = {s} (uncertain about the graphs).
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Examples: a local model based on ISSDM

A = {α1, . . . , αl}. Dirichlet distributions

X1 X2

X3

P(X1 = 0) α11 ∈ A

P(X1 = 1) α11 ∈ A

P(X2 = 0) α21 ∈ A

P(X2 = 1) α21 ∈ A2

X1 = 0 X1 = 0 X1 = 1 X1 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

P(X3 = 0) α31 ∈ A α32 ∈ A α33 ∈ A α34 ∈ A

P(X3 = 1) α31 ∈ A α32 ∈ A α33 ∈ A α34 ∈ A
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Examples: the local degenerated model

The set of graphs and parametrizations (G ,Θ).

X1 X2

X3

P(X1 = 0) θ111
P(X1 = 1) θ112

P(X2 = 0) θ211
P(X2 = 1) θ211

X1 = 0 X1 = 0 X1 = 1 X1 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

P(X3 = 0) θ311 θ321 θ331 θ341
P(X3 = 1) θ312 θ322 θ332 θ342

θijk ∈ [0, 1]
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Learning from Data

A thereshold is selected: γ ∈ [0, 1]. Given G and the families P(G), the set of models
is the set of graphs Go and fo such that

P(D|Go , fo) ≥ γmax
G ,f

P(D|G , f )

Learning the Structure

The set of possible networks is given by GD of all the graphs Go for which there is a fo
such that

P(D|Go , fo) ≥ γmax
G ,f

P(D|G , f )

Learning the Structure and parameters

It is the set of graphs Go ∈ GD with probabilities estimated with densities fo such that:

P(D|Go , fo) ≥ γmax
G ,f

P(D|G , f )

The set of pairs (Go , fo) will be denoted as MD . Each pair (Go , fo) defines a Bayesian
network with an associated joint probability PG0,fo .
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The Degenerated Model

We consider all the Bayesian networks (G0,Θ0), such that

P(D|Go ,Θo) ≥ γmax
G ,Θ

P(D|G ,Θ)

To compute maxG ,Θ P(D|G ,Θ) is quite simple (no missing
data). If D = {d1, . . . , dN} is the set of vectors of
observations
maxG ,Θ P(D|G ,Θ) =

∑

dj
Nj log(Nj/N)

where the sum is in the different vectors dj ∈ D and Nj is the
frequency of dj appears in D.
If all the vectors are different maxG ,Θ P(D|G ,Θ) = −N logN.

The main problem is that there are a high number of models
in MD . In fact if G ∈ GD , then for any supergraph G ′ of G ,
we will have G ′ ∈ GD .
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The Degenerated Model

If we have to determine a single Bayesian network in G, we
should select a single model (G , f ) with maximum entropy:
this produces simple networks, as simpler networks represent
more independence relationships and the entropy increases
whith independence.

If we have to select a subset of models M∗
D which is a good

representation of MD , there is not a direct procedure as in
the case of a single one.

The problem could be formalized as determining a subset
M∗

D ⊆ MD , such that for any (G , f ) ∈ MD there is a
(G ′, f ′) ∈ MD such that DKL(PG ,f ,PG ′,f ′) ≤ ǫ

Simpler models should be preferred for M∗
D (no details of

mathematical formulation)
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The ISSDM global model

We could apply the ISSDM in this framework with a finite set of
parameters S = {s1, . . . , sk}.

Differences with previous formulation

In previous cases, we considered all the graphs Go such that
there is s ′ ∈ S such that

Go = argmax
G

P(D|G , fs′)

where fs is the model obtained by assigning prior distributions
according to the BDEu model with s ′.

Now, we consider all the graphs Go such that there is s ′ ∈ S

such that

P(D|Go , fs′) ≥ γmax
G ,s

P(D|G , fs)
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The ISSDM global model
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Conclusions

We have studied imprecise probability in learning credal
networks

Even if we have a single sample size s, Koller, Friedman
(2000): “Model selection makes a somewhat arbitrary choice
between models that explain the data reasonably well”.

Likelihood approaches and likelihood intervals are a promising
approach to learn credal networks

Discarding models with low likelihood solves some problems
associated to the use of imprecise probabilities (too
uniformative).

Computational aspects should be studied in particular with
the degenerated model.

The problem of approximating a set of probabilities by a
subset keeping the most relevant information is interesting
and deserves more study.

S. Moral University of Granada - Spain Likelihood Based Methods for Learning of Credal Networks


