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Possibility distribution [Zadeh 78][Dubois-Prade 80] 

1

0

π

sup (π(x)/x belongs to R)=1 (instead of int(p(x)dx)=1) 

π(x) represents the possibility (instead of the probability) 
the value of the random variable  X  is equal to x 

0.8 

x

R

π(x) is a fuzzy set representing incomplete information in a 
gradual way (here the generalization of an interval) 
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(the more specific the less spread) 

For all x :  π1(x) < π2(x) < π3(x) (fuzzy subset inclusion) 

π(x) provides an intuitive expression of uncertainty 

1

0

π

R

π3	



π2	

π1	



π1 is more specific π2 that is more specific than π3 

Specificity of a possibility distribution 

Total ignorance 

Total certainty 

The specificity order reflects the informational content  
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Basics of Possibility theory 

•  Π(AUB)=max(Π(A), Π(B)) 

•  Ν(A∩B)=min(Ν(A), Ν(B)) 

•  Π(A)=1- N(Αc)	



•  Based on two non –additive set functions 

 the possibility measure Π and the necessity measure Ν) 

•  Π(A∩B)>min(Π(A), Π(B)) 

•  Ν(AUB)>max(Ν(A), Ν(B)) 

•  N(A)>0 => Π(A)=1 

π is also a faithful representation of a family of probability 
distributions   P (π) ={P/                                } )()(, AAPA Π≤Ω⊆∀

•  Π(A)=sup (P(A)/ P belongs to P (π) ) 

•  Ν(A)=inf (P(A)/ P belongs to P (π) ) 

Useful for cases of partial probability information 
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Possibility/Interval Links 

A possibility distribution can be viewed as 
gathering uncertainty intervals 

π	



π(x)=supα(α.πα(x)) 
1

0
α

Uncertainty interval  
The α-cuts of π can be identified to the β=1-α 

dispersion intervals of  a probability density p around x*  

x* 

πα(x): α-cut of π (it is an interval) 

x



Dispersion (or coverage) intervals 
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1 1( / 2), (1 / 2)X XG Gα α− −⎡ ⎤−⎣ ⎦

The set of dispersion intervals I1-α for all  
the levels 1-α constitutes a set of nested 
intervals, i.e. a possibility distribution 

π	



G: cumulative distribution 

G-1 

Probability density 

A dispersion interval I1-α of level 1-α of a random variable X contains 
(1-α)% of the population modeled by X, it can be built around different 
centers (mode, median, mean).For the median, it is defined by 
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Probability/Possibility conversion 
The equivalent possibility distribution π of the dispersion intervals 
is defined by identifying them to the α-cuts of π  

, ( ) ( )A A P A∀ Π ≥⇒ probability/possibility conversion 

1 1( ) ( ) 1 ( ( )) ( ( ))
X X

c cx G x G g x g xπ π= + − =

Type 1 conversion around a center c (two tailed) 

Type 2 conversion about a center c (one tailed) 
2 ( ( )) 1 ( ( )), ,1)

( ) 1 ( )
( ) min(

X

c G l x G r x
G c G c

xπ −

−
=

For continuous symmetric X about c: type1=type2 (l=r=id) 
1 2 , )( ) ( ) min(2 ( ) 2(1 ( )
X X

c cx x G x G xπ π= = −

[ ] [ ]: , ,g c c−∞ → +∞ decreasing/ g(c)=c 

[ ], , ( ) { ( ) ( )}x M g x y M p x p y∀ ∈ −∞ = ≥ = gives the most specific 

r increasing, l decreasing r(c)=l(c)=c 

Two main ways of building dispersion intervals 

Normalizing the probability density does not satisfy this condition 
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Conversion examples 

Uniform (black) 

Gauss (red) 

Cauchy (magenta) 

Pareto-Sym (green) 

Binomial 

( ) (1 )k k n k
n nP S k C p p −= = −

E np=

The mode and the median are 
varying according to n et p 
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Possibility conversion of a probability family 

( ) max Pr( )Xt X m tπ ∈= − ≥P

=> Probability inequalities 

Not easy to identify a single probability distribution [Gauss 1823] 

Gauss inequality: family of unimodal symmetric distributions having the 
same variance and the same mode 

Bienaymé-Chebyshev [1853]: family of distributions having the same 
mean and the same variance 

The possibility distribution is obtained by taking the envelop 
of the dispersion intervals of all the probability distributions 

This maximum specificity principle is better founded  
that the maximum entropy principle  
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Infinite support family conversion examples  
Mean and standard deviation ->BC 

+ 

Mode + standard deviation  -> GW 

+ 

known distribution e.g. Gauss 

2

2

4( ) ( ) min(1,max(1 , ))
93

tm t m t
t
σ

π π
σ

− = + = −

2

2( ) ( ) min(1, )m t m t P X m t
t
σ

π π− = + = ⎡ − > ⎤ =⎣ ⎦

(0, )( ) ( ) 1 2 ( ) 0.5Gm t m t F tσπ π− = + = − −
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Only the range is known ->rectangular possibility distribution 

 

Unimodality and symmetry -> triangular distribution 

  

Bounded support family conversion examples  
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Laplace 

Specificity/Loss functions 

( ) ( )( ) ( ) ( ( ( )) ( ( ( ))T X U Xx x E L T X E L U X
θ θ ϑ θ ϑ θπ π≤ ⇔ ≤

 L is any loss (or risk) function, e.g. :  
( , )L x xθ θ= −

2( , )L x xθ θ= − Gauss 

( ) ( )( ) ( ) 2. ( )T X T Xspindex x dx E T X
θ θ θπ π θ

+∞

−∞
= = −∫

Rem: for a symmetric continuous variable Tθ(X)  
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Specificity/Entropies 

 H is any generalized entropy :  

For two continuous unimodal symmetric 
probability densities f and g and 

( ) ( ( ))H f f x dxϕ
∞

−∞

= − ∫

( ) ( ), ( ) ( )f gx x x H f H gϕ ϕπ π≤ ∀ ⇔ ≤

  convex and continuous ϕ

( ) ( ) ( ( ))H X f x Ln f x dx
∞

−∞

= − ∫For the Shannon entropy 

[Mauris,2010][Couso and Dubois, 2010] 
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Specificity/SOSD, VaR and Gini 

( ) ( ) ,
t t

SOSDF G F x dx G x dx t
−∞ −∞

≤ ⇔ ≤ ∀∫ ∫

( ) ( )X Y SOSDx x X Yθ θπ π≤ ⇒ ≤

( ( )) 1P X VaR Xα α> = −

[ ]( ) ( ) ( ) ( ), 0,1X Yx x VaR X VaR Yθ θ
α απ π α≤ ⇒ ≥ ∀ ∈

1( ) ( )
( )

t

X O
L t F x dx

E X
= ∫

1
( ) 1 2 ( )XO
G X L t dt= − ∫

( ) ( ) ( ) ( )X Yx x G X G Yθ θπ π≤ ⇒ ≥

SOSD 

VaR 

Gini 

For continuous symmetric random variables 
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Peakedness is related to conventional stochastic ordering 

Specificity/Peakedness [Birnbaum, 1948] 

Pr( ) Pr( ),peakedX Y X t Y t tθ θ θ≥ ⇔ − ≥ ≤ − ≥ ∀

( ) ( )
def

peaked sto
X YX Y X Y F x F xθ θθ θ − −≥ ⇔ − ≤ − ⇔ ≤

For unimodal continuous symmetric random variables 

( ) ( ) peaked maj
X Yx x X Y X Yθ θπ π≤ ⇔ ≥ ⇔ ≤

The same holds for discrete random variables (Dubois and Hùllermeier 2007) 
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For unimodal symmetric distributions 

Introduced by Lévy for overcoming the 
limitation of using one dispersion parameter, 
e.g. the standard deviation   

Specificity/Lévy concentration [1935)] 

0, ( ) 1 ( )X Xx Q x xθπ θʹ′ ʹ′∀ ≥ = − +

[ ]
0 0 00, ( ) sup ( ) ( )X xx Q x F x x F x xʹ′∀ ≥ = + − −

The concentration is the complement of dispersion 
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Parameter inference example  

Temperature 

10 30 

θ  is a fixed unknown parameter, the variability of the 
measurements is due to the measurement process 

The measurements are realizations of a random variable X 

θ	

 Temperature 

Experimental 
measurements 
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Inference 

θ	



Temperature 

Temperature 10 30 

Representing θ  by g(θ / x) from the measurements xi’s and 
from an inference method: distribution of probability, 
possibility, plausibility,.. 

Experimental 
measurements 

Logical 
reasoning g :? 

Parameter inference problem  

de re uncertainty 

de dicto uncertainty 
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Conventional Probability Inference 

θ	

 Temperature 

Temperature 

10 30 

g: sets of confidence intervals , i.e. random intervals 

Experimental 
measurements 

frequentist  
confidence 

intervals 

g  

[ ]Pr ( ) ( ) 1u vX Xθ α≤ ≤ = −
u, v statistics derived from the 
measurements 
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Case of Proportion Estimation  

Involved in a lot of practical problems 
concerning estimation from samples 

e.g. number of defective parts in a production 
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Weak law of large numbers 

The sampled proportion Fn converges to the 
true one p with probability 1 

Knowing p allows to deduce 
the sampled dispersion of Fn 

with a definite probability 

de re  dispersion intervals 

Jacques Bernoulli Ars Conjectandi 1713 

2 2

(1 ) 10 ( )
4n

p pP F p
n n

ε ε
ε ε
−

∀ > − ≥ ≤ ≤

2

10, ( )
4n nP F p F
n

ε ε ε
ε

∀ > − ≤ ≤ + ≤2

10, ( )
4nP p F p
n

ε ε ε
ε

∀ > − ≤ ≤ + ≤

Observing the sampled Fn allows 
to induce the proportion p with a 

definite confidence 

de dicto confidence intervals 

The first probability inequality! 
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Confidence interval issues 

fn sampled proportion  

When the random variable  X is replaced by its realization 
we obtain usual  numerical confidence intervals or 

realized confidence intervals  

[ ]( ), ( )n nL f U f

[ ]( ), ( )n np L f U f∈ is either true or false and is not subject to a 
probability statement in a frequentist sense 

By transfer of the confidence level of the theoretical 
confidence interval to the realized confidence interval 

a de dicto uncertainty level is obtained for p	



The theoretical confidence interval is a procedure which once 
reiterated satisfies a success ratio equal to the confidence level	



	


e.g.: for 100 realized confidence intervals of level  90%, 90 contain the parameter 
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Confidence intervals / possibility distribution 

[ ]0,1
inf ( ( ) ( )) 1pp

P L x p U x α
∈

≤ ≤ ≥ −

By stacking up the realized confidence intervals for all  
the levels,  a possibility distribution is obtained 

1,...,
( ) min max(1 , ( ))X x i ii m
x I xπ α= =
= −

Expresses the conjunction of the possibility distributions issued from 
each level realized confidence interval and it corresponds to the most 
specific distribution versus the available data [Dubois-Prade 1992] 

[ ]0,1
inf pp

P
∈

A inf
p∈ 0,1"# $%

Pp (A)The function defined by 
does not define  a probability but indeed a necessity 

defines a probability 
lower bound	





28 

Conventional approach (Wald) 

Fn − p  N (0,
fn (1− fn )
n

)

 Fn : the random variable associated to the sampled proportion 
and fn one of its realizations; p the unknown fixed proportion 

based on the approximation of the binomial law by a Gaussian one 
proposed by De-Moivre and Laplace 

n=10 fn=0.5 n=10 fn=0.8 
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Laplace most advantageous method 

“Le procédé d’estimation le plus avantageux est évidemment 
celui dans lequel une même erreur dans les résultats est moins 

probable que suivant tout autre procédé”  

“the most advantageous” method is the one in which the 
error of the results is less probable as with any other method  

Simon Laplace Essai Philosophique 1814 

This principle is equivalent to say that the 
estimator T is better than U if 

Pr( ( ) ) Pr( ( ) ), 0T X t U X t tθ θθ θ− ≥ ≤ − ≥ ∀ ≥
r r

. 

This is equivalent to the maximum specificity 
possibility principle that is more general than the 

minimum variance principle 
Laplace has proved that for the Gaussian distribution the most 
advantageous method has minimal variance (Least square) 
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Let us consider again the temperature example and that the 
measurements are an iid sample from a continuous symmetric 
distribution, e.g. Gauss and Cauchy with dispersion=1 mean=0 

Possibility view of mean estimator 

n=1,3,30 n=1,3,30 

For the Gauss distribution, the specificity increases with 
the sample size, but not for the Cauchy distribution 
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Possibility view of median estimator 

n=1,3 n=1,3 

Let us consider an iid sample from a continuous symmetric 
distribution, e.g. Gauss and Cauchy with dispersion=1 mean=0 

For the Gauss and also the Cauchy distributions, 
the specificity increases with the sample size 



32 

Comparison median versus mean 

Let us consider an iid sample from a Gauss distribution 
with standard deviation=1 mean=0 

It seems that the possibility median estimator for 2n+1 
data  is more specific than the mean estimator for 2n data 

n=2,3 n=3 
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Inference with poor knowledge 

-  Case of very few measurements (Gauss 
approximation not applicable) 

- Limited knowledge about X (no single probability) 

It can be modeled by a family F of probability 
distributions, rather than selecting a single one 

 

Again probability inequalities can be used to define a 
possibility distribution dominating all probability 

distributions in the family 
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non-symmetric 

symmetric 

Gauss ( 1)t ≥

P(θ ε [X – k |X| , X +k +|X |]) ≥ 1 – 2/(k+1) (k>1)(unimodal)  

Illustration with one measurement 

P(θ ε [X – k |X| , X +k +|X |]) ≥ 1 – 1/(k+1) (k>1) (+ symmetric)  

The distribution, the support and the variance are unknown 
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P(θ ε [(X+Y)/2 – k |X-Y|/2 , (X+Y)/2 +k |X-Y|/2 ]) ≥ 1 – 2/(k+1) (k>1)  

Illustration with two measurements X, Y 
The distribution, the support and the variance are unknown 

 

Two gaussian 
measurements  
(Student)  

0
1 30x =  and 0

2 28x =  

One measurement 
and one guess 

0
1 30x =  and 028A =  

Two measurements 
 0

1 30x =  0
2 28x =  

P(θ ε [(X+Y)/2 – k |X-Y|/2 , (X+Y)/2 +k |X-Y|/2 ]) ≥ 1 – 1/(k+1) (k>1) 
(symmetric)  
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Conclusion/Perspectives 

A possibility distribution can provide a useful 
uncertainty representation  related to many 

conventional descriptive and inferential 
statistical notions 

  
The maximum specificity principle (i.e. fuzzy subset 

inclusion) is a strong general principle for 
statistical inference 

 

Casting the Fisher and Bayesian approaches (credible 
fiducial and intervals) in the possibility framework? 
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Thank you for 
your attention 


