Optimism in Reinforcement Learning and Kullback-Leibler Divergence

Our Goal: Model-Based Online Reinforcement Learning

with unknown

- T **Fransition** $P(s'; s, a) = P(S_{t+1} = s' | S_t = s, A_t = a)$ Reward $r(s, a) = \mathbb{E}(R_t | S_t = s, A_t = a)$
- Implement an on-policy strategy for controlling the agent
- Doing "almost as good" (in terms of cumulated rewards) as an oracle agent that knows the optimal policy

A Simpler Case: Multi-Armed Bandit Models

In Multi-Armed Bandits (MAB), there is only one state *s*₀

- \blacksquare Actions A_t do not influence the state of the environment
- The reward $\mu(a) = r(s_0, a)$ is the only unknown

$$
a^* = \underset{a \in A}{\text{argmax}} \mu(a)
$$

and the loss wrt. the oracle agent can be measured by the regret

$$
\text{Regret}(n) = \sum_{t=1}^n \mu(a^*) - \mu(A_t)
$$

Upper Confidence Bound (UCB)

In MAB problems, the optimism in the face of uncertainty heuristic [Lai & Robins, 85; Agrawal, 95] has been very successful

The UCB (Upper Confidence Bound) algorithm [Auer *et al*, 02] plays the action *A^t* such that

■ *N_t*(*a*) is the number of times arm *a* has been played before time *t* $\hat{\mu}_t(a) = \mathcal{N}_t(a)^{-1} \sum_{i=1}^{t-1} R_i \mathbb{1}\{A_i = a\}$ is the empirical estimate of $\mu(a)$

It achieves an expected regret that only grows logarithmically with *n*

Upper Confidence Reinforcement learning

In MDPs, [Auer et al, 07–10; Tewari & Bartlett, 07–08] propose to replace the upper confidence bound of UCB by an optimistic MDP (P^{*}, r^{*}) whose average reward $\rho^* =$ lim $n^{-1} \sum_{t=0}^{n-1} \mathbb{E}_{\pi^*}({\mathit{R}}_t)$ and bias vector *h* ∗ (*s*) satisfy an extended version of Bellman's optimality equations

$$
\forall s, h^*(s) + \rho^* = \max_{P, r \in C_t^P \times C_t^r} \max_{a \in A} \left(r(s, a) + \sum_{s' \in S} P(s'; s, a) h^*(s') \right)
$$

$$
\forall s, \pi^*(s) = \underset{a \in A}{\operatorname{argmax}} \left(r^*(s, a) + \sum_{s' \in S} P^*(s'; s, a) h^*(s') \right)
$$

where \mathcal{C}_t^R and \mathcal{C}_t^r are confidence sets for P and r , respectively

Extended Value Iteration

The bias vector *h*[∗] is determined (up to a constant) as the limit of extended value iterations

While span
$$
(V_{k+1} - V_k) > \varepsilon
$$
,
\n $\forall s, V_{k+1}(s) = \max_{a \in A} \left(\max_{r \in C'_t} r(s, a) + \max_{P \in C'_t} \sum_{s' \in S} P(s'; s, a) V_k(s') \right)$

Issues Not Discussed Here

Influence of the termination tolerance ε Ignored in our work, analyzed in [Auer et al, 07–10]

Convergence of extended value iterations Considered (for *L* 1 neighborhoods) by [Auer et al, 07–10; Tewari & Bartlett, 07–08] and for KL neighborhoods in the discounted case by [Nilim & EL Ghaoui, 05]

Persistence of policies In MDPs it is not possible to continuously change the policy as in MABs. We used the episodic construction of [Auer et al, 07–10] in which the optimistic policy is recomputed at times that approximately follow a geometric progression with ratio 2

Definition of the Confidence Set

[Auer et al, 07–10; Tewari & Bartlett, 07–08] consider rectangular confidence sets of the form

$$
\forall (s, a), \, \left\|\hat{P}_t(.; s, a) - P(.; s, a)\right\|_1 \leq \delta_P
$$

$$
\forall (s, a), \, \left|\hat{r}_t(s, a) - r(s, a)\right| \leq \delta_R
$$

where $\hat{P}_t(s'; s, a) = N_t(s, a)^{-1} \sum_{i=0}^{t-1} \mathbb{1}\{S_{i+1} = s', S_i = s, A_i = a\}$ and $\hat{r}_t(\bm{s},\bm{a}) = \mathsf{N}_t(\bm{s},\bm{a})^{-1}\sum_{i=0}^{t-1}\mathsf{R}_i\mathbb{1}\{\mathsf{A}_i=\bm{a}\}$ are the empirical estimates of P and *r* at time *t*

The probabilities of violating the confidence sets are controlled by the Hoeffding inequality for $\hat{r}_t(s, a)$ and by the bound of [Weissman *et al*, 03] for \hat{P} (\cdot ; *s*, *a*)

How Does *L* ¹ **Extended Value Iteration Operates?**

For each state and action pair, one must solve a problem of the form

> *q*^{*} = argmax *q' V* $q:$ $||p-q||_1 < \delta$

where *p* is the empirical estimate of the transition probabilities and *V* is the current estimate of the bias vector

- inflate ρ_i (if possible) by a total amount of δ for indices i that maximize *Vⁱ*
- reduce *pⁱ* (as much as needed) for indices *i* where *Vⁱ* is the smallest

 \Rightarrow easy both to implement an interpret, but...

How Does *L* ¹ **Extended Value Iteration Operates?**

For each state and action pair, one must solve a problem of the form

> *q*^{*} = argmax *q' V* $q:$ $||p-q||_1 < \delta$

where *p* is the empirical estimate of the transition probabilities and *V* is the current estimate of the bias vector

- inflate ρ_i (if possible) by a total amount of δ for indices i that maximize *Vⁱ*
- reduce *pⁱ* (as much as needed) for indices *i* where *Vⁱ* is the smallest

 \Rightarrow easy both to implement an interpret, but...

Our Proposal: Kullback-Leibler URCL

The role played by the KL divergence in large deviations of multinomial experiments suggests that the proper confidence neighborhoods are

rather than

⇒ Use KL rather than *L* ¹ constraints!

Solving KL-Extended Value Maximization

For each state-action pair, one must solve a linear program under KL constraint

$$
q^* = \underset{q:KL(p;q) \leq \delta}{\text{argmax}} q'V
$$

The solution is given by an explicit non-linear transformation of *p* which is fully controlled by the solution ν to the equation $f(\nu) = \delta$, where *f* is the one-dimensional decreasing stricly convex function on $(\left.\textsf{max}_{i: p_i>0} \right. V_i, \infty)$ defined by

$$
f(\nu) = \sum_{i} p_i \log(\nu - V_i) + \log \left(\sum_{i} \frac{p_i}{\nu - V_i} \right)
$$

KL-LP's Rule I "Bigger rewards gets more likely"

KL-LP's Rule II "You can't get to heaven when δ **is too small"**

Regret Bound

Adapting the proof of [Auer et al, 07–10] it is possible to show that KL-UCRL achieves logarithmic regret in communicating MDPs (as does UCRL)

Main arguments of the proof

Pinsker's inequality $\lVert p - q \rVert_1 \leq \sqrt{2\mathsf{KL}(p; q)}$

Bound of [Garivier & Leonardi, 10]

$$
\mathbb{P}\left(\forall t \leq n, \; \mathcal{K}L(\hat{p}_t; p) > \frac{\delta}{t}\right) \leq 2e(\delta \log(n) + |S|)e^{-\delta/|S|}
$$

In simulations however (benchmark and random sparsely connected environments), KL-UCRL performs significantly better than UCRL

 \Box

Discussion: Continuity of the optimistic MDP

L^1 Neighborhoods

KL Neighborhoods

 $15/18$ **Imprecise Probabilities** Sarah Filippi, Olivier Cappé, Aurélien Garivier

Discussion: Compatibility with observed transitions

L¹ Neighborhoods

KL Neighborhoods

Discussion: Tradeoff between the attraction towards the best state and the statistical evidence that it may not be reachable from all states

L¹ Neighborhoods

Thank you!

 $18/18$ **Imprecise Probabilities** Sarah Filippi, Olivier Cappé, Aurélien Garivier