Optimism in Reinforcement
Learning and
Kullback-Leibler
Divergence
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Our Goal: Model-Based Online Reinforce-
ment Learning

Assuming a finite Observation S;
state-space finite

action-space Markov
- Agent -
Decision Process Action A;

(MDP)

Reward R;
with unknown

Transition P(s’;s,a) = P(St.1 = 8|St = s, At = a)
Reward r(s,a) = E(R:S: = s,A: = a)

B Implement an on-policy strategy for controlling the agent

B Doing “almost as good” (in terms of cumulated rewards) as an
oracle agent that knows the optimal policy
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A Simpler Case: Multi-Armed Bandit
Models

In Multi-Armed Bandits (MAB), there is only one
state sy

B Actions A; do not influence the state of the
environment

B The reward p(a) = r(so, @) is the only unknown

The oracle agent always plays an action a* that has largest expected
reward

a* = argmax pu(a)
achA

and the loss wrt. the oracle agent can be measured by the regret

Regret(n) = Z (@) — (A
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Upper Confidence Bound (UCB)

In MAB problems, the optimism in the face of uncertainty heuristic [Lai
& Robins, 85; Agrawal, 95] has been very successful

The UCB (Upper Confidence Bound) algorithm [Auer et al, 02] plays the

action A; such that
N alog(t)
A; = argmax a +
t g fir(a) Ni(a)

achA
greedy action —_——

exploration bonus

B N;(a) is the number of times arm a has been played before time t
B (a) = Ni(a)~' /2] Ri1{A = a} is the empirical estimate of 1(a)

It achieves an expected regret that only grows logarithmically with n
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Upper Confidence Reinforcement learning

In MDPs, [Auer et al, 07—10; Tewari & Bartlett, 07—-08] propose to replace
the upper confidence bound of UCB by an optimistic MDP (P*, r*)
whose average reward p* = limn~" Zf;& E.-(Rt) and bias vector
h*(s) satisfy an extended version of Bellman’s optimality equations

Vs, h*(s) +p* = max max (r (s,a)+ > _ P(s;s a)h*(s ))

P.recPxcr achA oy

Vs, 7*(s) = argmax (r (s,a)+ Y _ P*(sis a)h(s ))

ach s'eS

where CF and ] are confidence sets for P and r, respectively
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Extended Value lteration

The bias vector h* is determined (up to a constant) as the limit of
extended value iterations

B While span( Vi1 — V) > &,

acA \ recs Pect 05

Vs, Viy1(s) = max (max r(s,a) + max Z P(s';s, a) Vk(s’)>
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Issues Not Discussed Here

Influence of the termination tolerance ¢ Ignored in our work, analyzed
in [Auer et al, 07—10]

Convergence of extended value iterations Considered (for L'
neighborhoods) by [Auer et al, 07—10; Tewari & Bartlett,
07-08] and for KL neighborhoods in the discounted case
by [Nilim & EL Ghaoui, 05]

Persistence of policies In MDPs it is not possible to continuously
change the policy as in MABs. We used the episodic
construction of [Auer et al, 07—10] in which the optimistic
policy is recomputed at times that approximately follow a
geometric progression with ratio 2
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Definition of the Confidence Set

[Auer et al, 07-10; Tewari & Bartlett, 07—08] consider rectangular
confidence sets of the form

v(s, a),

Py(.;s,a)— P(:s, a)”1 < 6p
V(S’ a)a |?t(s7 a) - r(S, a)| < 5R
where Py(s';s,a) = Ni(s,a) ' 215 1{S;j;1 = §,S; = s, A; = a} and

Pi(s,a) = Ni(s,a)™! ,’;8 Ri1{A; = a} are the empirical estimates of P
and r attime ¢

The probabilities of violating the confidence sets are controlled by the
Hoeffding inequality for 7:(s, a) and by the bound of [Weissman et a/, 03]
for P(.;s,a)
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How Does L' Extended Value Iteration
Operates?

For each state and action pair, one
must solve a problem of the form

q* = argmax q'V
q:llp—qll1 <6

where p is the empirical estimate of
the transition probabilities and V is the
current estimate of the bias vector

B inflate p; (if possible) by a total amount of § for indices i that
maximize V;

B reduce p; (as much as needed) for indices i where V; is the
smallest

= easy both to implement an interpret, but...
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Our Proposal: Kullback-Leibler URCL

The role played by the KL divergence in large deviations of multinomial
experiments suggests that the proper confidence neighborhoods are

A A A
A A A

= Use KL rather than L' constraints!

. .
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Solving KL-Extended Value Maximization

For each state-action pair, one must solve a
linear program under KL constraint Y
q* = argmax q'V -
q:KL(p;:q)<d

The solution is given by an explicit non-linear transformation of p which
is fully controlled by the solution v to the equation f(v) = ¢, where f is
the one-dimensional decreasing stricly convex function on

(max;.p>0 Vi, c0) defined by

f(V):prlog(v—V/HIog (Z P )

—~ v —V
]
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KL-LP’s Rule |
“Bigger rewards gets more likely”
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B0
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o
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KL-LP’s Rule |l
“You can’t get to heaven when ¢ is too

bE)
small
5=0.2 5=0.01
0.8 0.8
> 0.6 0.6
2,
< 04 0.4
o
o
0.2 0.2
0 0
V1Vv2V3 V4 V5 V1V2V3 V4 V5
value value
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Regret Bound

Adapting the proof of [Auer et al, 07-10] it is possible to show that
KL-UCRL achieves logarithmic regret in communicating MDPs (as
does UCRL)

Main arguments of the proof

B Pinsker’s inequality ||p — q|l1 < v/2KL(p; q)
B Bound of [Garivier & Leonardi, 10]

P (Vt < n, KL(pr; p) > i) < 2e(slog(n) + |S|)e~?/I8!

In simulations however (benchmark and random sparsely connected
environments), KL-UCRL performs significantly better than UCRL
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Discussion:

L' Neighborhoods

Imprecise Probabilities

Continuity of the optimistic MDP

KL Neighborhoods

Sarah Filippi, Olivier Cappé, Aurélien Garivier



Discussion: Compatibility with observed transitions

L' Neighborhoods KL Neighborhoods
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Discussion: Tradeoff between the attraction to-
wards the best state and the statistical evidence that
it may not be reachable from all states

L' Neighborhoods KL Neighborhoods
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Thank you!
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