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Kullback-Leibler
Divergence



2 / 18 Imprecise Probabilities Sarah Filippi, Olivier Cappé, Aurélien Garivier

Our Goal: Model-Based Online Reinforce-
ment Learning

Assuming a finite
state-space finite
action-space Markov
Decision Process
(MDP)

Agent Envir.

Reward Rt

Action At

Observation St

with unknown
Transition P(s′; s,a) = P(St+1 = s′|St = s,At = a)

Reward r(s,a) = E(Rt |St = s,At = a)

Implement an on-policy strategy for controlling the agent
Doing “almost as good” (in terms of cumulated rewards) as an
oracle agent that knows the optimal policy
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A Simpler Case: Multi-Armed Bandit
Models

In Multi-Armed Bandits (MAB), there is only one
state s0

Actions At do not influence the state of the
environment
The reward µ(a) = r(s0,a) is the only unknown

The oracle agent always plays an action a∗ that has largest expected
reward

a∗ = argmax
a∈A

µ(a)

and the loss wrt. the oracle agent can be measured by the regret

Regret(n) =
n∑

t=1

µ(a∗)− µ(At)
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Upper Confidence Bound (UCB)

In MAB problems, the optimism in the face of uncertainty heuristic [Lai
& Robins, 85; Agrawal, 95] has been very successful

The UCB (Upper Confidence Bound) algorithm [Auer et al, 02] plays the
action At such that

At = argmax
a∈A

µ̂t(a)︸ ︷︷ ︸
greedy action

+

√
α log(t)
Nt(a)︸ ︷︷ ︸

exploration bonus

Nt(a) is the number of times arm a has been played before time t
µ̂t(a) = Nt(a)−1∑t−1

i=1 Ri1{Ai = a} is the empirical estimate of µ(a)

It achieves an expected regret that only grows logarithmically with n
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Upper Confidence Reinforcement learning

In MDPs, [Auer et al, 07–10; Tewari & Bartlett, 07–08] propose to replace
the upper confidence bound of UCB by an optimistic MDP (P∗, r∗)
whose average reward ρ∗ = lim n−1∑n−1

t=0 Eπ∗(Rt) and bias vector
h∗(s) satisfy an extended version of Bellman’s optimality equations

∀s, h∗(s) + ρ∗ = max
P,r∈CP

t ×Cr
t

max
a∈A

(
r(s,a) +

∑
s′∈S

P(s′; s,a)h∗(s′)

)

∀s, π∗(s) = argmax
a∈A

(
r∗(s,a) +

∑
s′∈S

P∗(s′; s,a)h∗(s′)

)

where CR
t and Cr

t are confidence sets for P and r , respectively
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Extended Value Iteration

The bias vector h∗ is determined (up to a constant) as the limit of
extended value iterations

While span(Vk+1 − Vk ) > ε,

∀s , Vk+1(s) = max
a∈A

(
max
r∈Cr

t

r(s,a) + max
P∈CP

t

∑
s′∈S

P(s′; s,a)Vk (s′)

)
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Issues Not Discussed Here

Influence of the termination tolerance ε Ignored in our work, analyzed
in [Auer et al, 07–10]

Convergence of extended value iterations Considered (for L1

neighborhoods) by [Auer et al, 07–10; Tewari & Bartlett,
07–08] and for KL neighborhoods in the discounted case
by [Nilim & EL Ghaoui, 05]

Persistence of policies In MDPs it is not possible to continuously
change the policy as in MABs. We used the episodic
construction of [Auer et al, 07–10] in which the optimistic
policy is recomputed at times that approximately follow a
geometric progression with ratio 2
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Definition of the Confidence Set

[Auer et al, 07–10; Tewari & Bartlett, 07–08] consider rectangular
confidence sets of the form

∀(s,a),
∥∥∥P̂t(.; s,a)− P(.; s,a)

∥∥∥
1
≤ δP

∀(s,a), |r̂t(s,a)− r(s,a)| ≤ δR

where P̂t(s′; s,a) = Nt(s,a)−1∑t−1
i=0 1{Si+1 = s′,Si = s,Ai = a} and

r̂t(s,a) = Nt(s,a)−1∑t−1
i=0 Ri1{Ai = a} are the empirical estimates of P

and r at time t

The probabilities of violating the confidence sets are controlled by the
Hoeffding inequality for r̂t(s,a) and by the bound of [Weissman et al, 03]
for P̂(.; s,a)
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How Does L1 Extended Value Iteration
Operates?

For each state and action pair, one
must solve a problem of the form

q∗ = argmax
q:‖p−q‖1≤δ

q′V

where p is the empirical estimate of
the transition probabilities and V is the
current estimate of the bias vector

inflate pi (if possible) by a total amount of δ for indices i that
maximize Vi

reduce pi (as much as needed) for indices i where Vi is the
smallest

⇒ easy both to implement an interpret, but...
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Our Proposal: Kullback-Leibler URCL
The role played by the KL divergence in large deviations of multinomial
experiments suggests that the proper confidence neighborhoods are

rather than

⇒ Use KL rather than L1 constraints!
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Solving KL-Extended Value Maximization

For each state-action pair, one must solve a
linear program under KL constraint

q∗ = argmax
q:KL(p;q)≤δ

q′V

The solution is given by an explicit non-linear transformation of p which
is fully controlled by the solution ν to the equation f (ν) = δ, where f is
the one-dimensional decreasing stricly convex function on
(maxi:pi>0 Vi ,∞) defined by

f (ν) =
∑

i

pi log(ν − Vi) + log

(∑
i

pi

ν − Vi

)
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KL-LP’s Rule I
“Bigger rewards gets more likely”
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KL-LP’s Rule II
“You can’t get to heaven when δ is too
small”
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Regret Bound

Adapting the proof of [Auer et al, 07–10] it is possible to show that
KL-UCRL achieves logarithmic regret in communicating MDPs (as
does UCRL)
Main arguments of the proof

Pinsker’s inequality ‖p − q‖1 ≤
√

2KL(p;q)
Bound of [Garivier & Leonardi, 10]

P
(
∀t ≤ n, KL(p̂t ;p) >

δ

t

)
≤ 2e(δ log(n) + |S|)e−δ/|S|

�

In simulations however (benchmark and random sparsely connected
environments), KL-UCRL performs significantly better than UCRL
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Discussion: Continuity of the optimistic MDP

L1 Neighborhoods KL Neighborhoods
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Discussion: Compatibility with observed transitions

L1 Neighborhoods KL Neighborhoods
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Discussion: Tradeoff between the attraction to-

wards the best state and the statistical evidence that

it may not be reachable from all states

L1 Neighborhoods KL Neighborhoods



18 / 18 Imprecise Probabilities Sarah Filippi, Olivier Cappé, Aurélien Garivier

Thank you!


	Our Goal: Model-Based Online Reinforcement Learning
	A Simpler Case: Multi-Armed Bandit Models
	Upper Confidence Reinforcement learning (UCRL)
	Our Proposal: Kullback-Leibler URCL (KL-UCRL)
	Discussion

