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A bit about my reasearch

Building bridges between tools of different animals in the
uncertainty zoo
PhD in risk analysis (with E. Chojnacki and D. Dubois), focusing
on information fusion, uncertainty propagation and practical
uncertainty representation under severe uncertainty
More recently, focusing on machine learning issues:

I learning and inferring with uncertain/imprecise data
I learning and inferring with structured output (this talk)
I using imprecision in active learning
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An exemple of structured/complex output

Usual classification

X1 X2 w1 w2 w3 w4

25 Blue 1 0 0 0

10 Red 0 1 0 0

30 Blue 1 0 0 0

5 Green 0 0 1 0

15 Red 0 0 0 1

. . . . . . . . . . . . . . . . . .

5 Red ? ? ? ?

Multilabel classification

X1 X2 w1 w2 w3 w4

25 Blue 1 0 1 0

10 Red 0 1 0 0

30 Blue 1 0 1 1

5 Green 0 1 1 0

15 Red 1 1 0 1

. . . . . . . . . . . . . . . . . .

5 Red ? ? ? ?

Destercke (HEUDIASYC) cost and IP CIMI 3 / 38



Introductory examples

Predict whether there is a pedestrian, a bicycle or nothing

Cost Obs
er

va
tio

n

p b n

Cho
ice

p 0 1 1
b 1 0 1
n 1 1 0

Usual costs in classification: 0/1
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Introductory examples

Predict whether there is a pedestrian, a bicycle or nothing

Cost Obs
er

va
tio

n

p b n

Pre
dic

tio
n p 0 0.5 2

b 0.5 0 2
n 10 10 0

Often, different mistakes have different consequences
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Introductory examples

Predict the rate someone would give a movie: very bad, bad, good,
very good

Cost Obs
er

va
tio

n

vb b g vg

Pre
dic

tio
n vb 0 1 2 3

b 1 0 1 2
g 2 1 0 1
vg 3 2 1 0

Predictions "further away" from truth worse
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Costs

Cost in prediction problems have two main origins:
given by the application (medical diag., intelligent vehicles, . . . )
induced by the output structure

Interests of imprecise probabilities
structured data often partially missing
partially predicted structure may contain needed information

Challenges of imprecise probabilities
build efficient ways to learn and infer with costs in such spaces
provide readable and interpretable imprecise predictions
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Why (not) imprecise probabilities?
Why using it?

you are genuinely interested in having imprecise info/predictions
I to know when collecting more info (active learning?)
I to let the decision maker decide about its risk attitude
I mistakes can be very costly

you want to postpone precisiation as much as possible
I to make minimal assumption when processing information
I you want to postpone precisiation as much as possible

Why not using it?
you cannot computationally afford it

I combinatorial issues
I big data (however, big data 6= lot of data everywhere)

you have enough data (everywhere)
making some mistakes is not that damageable (compared to
added computational burden)
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Talk Outline

1 Short reminders about IP and Decision
2 Ordinal regression, or when costs lead to more intuitive results
3 Multilabel classification, or when including costs reduces

complexity
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Some notations

Set Y = {y1, . . . , yk} of k disjoint states
Space A = {a1, . . . ,ad} of possible choices/alternatives
Either a probability p or a (convex) set P of them over Y
Cost function C : A× Y → R with

C(a, y)

cost of predicting a when y observed value
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Decision with precise p

With the usual 0/1 costs and A = Y,

y � y ′ if p(y) > p(y ′)
if p(y)− p(y ′) > 0
if p(y)/p(y ′) > 1

I involves two variables p(y),p(y ′)

With generic costs and any A,

a � a′ if E(C(a′, ·)) > E(C(a, ·))

if
∑
y∈Y

p(y)(C(a′, y))− C(a, y)) > 0

I involves summation over Y
≺ complete pre-order→ getting it on A requires d comparisons
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Decision with set P

With the usual 0/1 costs and A = Y,

y � y ′ if p(y) > p(y ′) for all p ∈ P
if inf

p∈P
p(y)− p(y ′) > 0

if inf
p∈P

p(y)/p(y ′) > 1

I optimizing over two variables p(y),p(y ′)

With generic costs and any A,

a � a′ if E(C(a′, ·)) > E(C(a, ·))

if inf
p∈P

∑
y∈Y

p(y)(C(a′, y))− C(a, y)) > 0

I optimizing over k variables

≺ partial pre-order→ requires at worst ∼ d2 comparisons
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Prediction

Prediction = maximal elements of the (partial) order ≺

Precise decision/case

y1

y2

y3

Imprecise decision/case

y1 y2

y3
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Talk Outline

1 Short reminders about IP and Decision
2 Ordinal regression, or when costs lead to more intuitive

results
3 Multilabel classification, or when including costs reduces

complexity
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Ordinal classification setting

Classes Y = {y1, . . . , yn} ranked, but without metric

. . . . . .

Other applications:
item ranking
disease severity diagnosis
reliability analysis (degradation state)
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0/1 cost problem

Consider A = Y = {y1, y2, y3} and P

p(y1) ∈ [0.25,0.45]
p(y2) = 0.3
p(y3) ∈ [0.25,0.45]

For any possible p ∈ P

p(y1) = 0.25
p(y2) = 0.3
p(y3) = 0.45

p(y1) = 0.45
p(y2) = 0.3
p(y3) = 0.25

either p(y1) or p(y3) > 0.3

Prediction {y1, y3} contains "gaps"’
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First way around: usual costs (square)

Choosing the function f (yi) = i replacing yi by its rank, we can show

that taking the square cost

C2(yi , yj) = (i − j)2

yj yj+1yj−1 yj+2yj−2

leads to predict ranks i ∈ [E(f ),E(f )] between lower and upper
expectations
prediction without gaps
yet, rely on a non-ordinal concept (expectations)
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First way around: usual costs (absolute)

Choosing the function f (yi) = i replacing yi by its rank, we can show

that taking the absolute cost

C1(yi , yj) = |i − j |

yj yj+1yj−1 yj+2yj−2

leads to predict yi ∈ [MeP ,MeP ] between lower and upper
medians
prediction without gaps
relying on an ordinal concept
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Numerical costs: summary

Previous costs:
solve the issue with 0/1 costs
extend well-known results from precise case
yet, they still require to define a numerical cost

can we do with less assumptions?
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Second way around: lower/upper median

general V -shaped symmetric costs such that

C(yi , yj)

is symmetric and strictly increasing around yj .
C(yi , yj)− C(yk , yj) not numerically defined, yet we have

C(yi , yj)− C(yk , yj) is


> 0 if |i − j | > |k − j |
= 0 if |i − j | = |k − j |
< 0 if |i − j | < |k − j |

using the notion of sign-preference, we can show that

[MeP ,MeP ]

is again a natural solution
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Talk Outline

1 Short reminders about IP and Decision
2 Ordinal regression, or when costs lead to more intuitive results
3 Multilabel classification, or when including costs reduces

complexity
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Problem introduction

Among a set L = {`1, . . . , `L} of L labels, predict which one is relevant

Kind of problems:
Image tagging (labels: mountains, cars, sea, animals,. . . );
Functions of a gene, a protein, . . . ;
Topics of documents, . . .
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Problem setting

Y: set of binary vectors of size L
y j ∈ {0,1} jth value of y ∈ Y
y j = 1 means jth label relevant

We will consider two costs and sets of predictions:
Hamming costs where A = Y
Ranking costs where A = sets of rankings over L
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Some issues

Computational
Comparing 2 alternatives

for 0/1 costs and A = Y, may be doable
for other costs and A, naive summation prohibitive

Building orders if A = Y
2L comparisons for complete orders
22L comparisons for partial ones

Doable only if L small (< 15) and comparisons computationally cheap

Representational
Providing a (big) set of binary vectors as prediction not very user
friendly

Destercke (HEUDIASYC) cost and IP CIMI 24 / 38



0/1 cost and problem structure

Under 0/1 cost and L = 6, if

y= 1 1 0 1 0 0

is observed, cost C(a, y) of predicting

a= 0 1 0 1 0 0

same as C(a′, y) of predicting

a′= 0 0 1 0 1 1

the 0/1 cost does not integrate any notion of structure. But is a not
better than a′?
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The Hamming cost

A = Y
CH(a, y) hamming distance between a and y :

Ch(a, y) =
∑

j∈{1,...,L}

1(aj 6=y j )

count the number of mistakes
reflect the structure of the problem
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Example

Under the Hamming loss, if

y= 1 1 0 1 0 0

is observed, we have cost C(a, y) = 1

a= 0 1 0 1 0 0

and C(a′, y) = 6

a′= 0 0 1 0 1 1
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Predicting with Hamming cost

if P probability set over Y and
[P(y j = 1),P(y j = 1)] the marginal probability bounds
the prediction A such that

Aj =


1 if P(y j = 1) > 1/2
0 if P(y j = 1) < 1/2
∗ else

includes all the maximal elements (and possibly more) obtained
using Hamming cost.
Computing A requires only 2L estimations and comparisons
Provides an easily readable and computable outer-approximation
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Example

Predicting

A= 1 * 0 1 * 0

includes the predictions

1 1 0 1 0 0

1 0 0 1 0 0

1 1 0 1 1 0

1 0 0 1 1 0
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The ranking cost

A = rankings/set of permutations over L
|A| = L!, computationally worse than before
Aim at ranking labels from most to least relevant
Multilabel observations seen as bipartite dominance graph
encoding partial information about ranking
CR(a, y) number of discordant pairs between a and y :

CR(a, y) =
∑

i,j∈{1,...,L}2

1((`i�`j )∧(y j=1,y i=0))
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Example
Consider L = 6 and `1, `2, `4 are relevant

y=

`1

`2

`4

`3

`5

`6

a=

`1 � `4 � `2 � `3 � `5 � `6

CR(a, y) = 0

`4 � `2 � `1 � `5 � `6 � `3

CR(a, y) = 0

`4 � `3 � `1 � `5 � `2 � `6

CR(a, y) = 3
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Example
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Predicting with ranking cost

if P probability set over Y and
[P(y j = 1),P(y j = 1)] the marginal probability bounds
predicting the partial order ≺ such that

`i ≺ `j iff P(y i = 1) < P(y j = 1)

has linear extensions including all the maximal elements (and
possibly more) obtained using ranking cost.
Computing ≺ requires 2L estimations and at most L2 comparisons
Provides an easily readable and computable outer-approximation
Drawback: outer-approximation can be of bad quality→ go
beyond interval orders?
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Multilabel case: conclusions

Costs:
allow to encode that some predictions are closer to the
observation
can consider the case predictions are different from observations

I observations seen as degraded information
I use of techniques providing outputs different form observations

"Decomposable" costs
can lead to efficient and readable inferences
can pinpoint peculiar values to estimate
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Structured output: other problems

Predicting rankings
I preferences over objects
I any relation "more xxx than"

Predicting partial orders
I preferences with incomparability
I acyclic graphs (causal networks?)

Many other structured outputs
I hierarchical classes
I grammar trees
I (ontic) histograms or fuzzy sets, . . .
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Other issues and challenges

Learning and evaluating
How to efficiently learn models?

I decomposing the problem
I directly making the prediction (without estimation step?)
I use of parametric/simplified models

How can we define an "optimal" IP model?
I what makes a IP model "better" than another?
I how to evaluate IP models and imprecise predicitons with costs?
I how to define this notion so that optimal model is easy to obtain?

Destercke (HEUDIASYC) cost and IP CIMI 35 / 38



Conclusions

6= costs for 6= mistakes in most, if not all practical application
costs an integral part of many recent machine learning problems
structured output prediction present technically challenging
problems where IP may be useful
beyond costs for mistakes, need to study cost (value) of
information
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