Cost-sensitive classification and imprecise probabilities: motivation and some advances

Sebastien Destercke

Heuristic and Diagnosis for Complex Systems (HEUDIASYC) laboratory, Compiegne, France

CIMI workshop

 Ω

REPARE

A bit about my reasearch

- Building bridges between tools of different animals in the uncertainty zoo
- PhD in risk analysis (with E. Chojnacki and D. Dubois), focusing on information fusion, uncertainty propagation and practical uncertainty representation under severe uncertainty
- More recently, focusing on machine learning issues:
	- \blacktriangleright learning and inferring with uncertain/imprecise data
	- \blacktriangleright learning and **inferring with structured output** (this talk)
	- \blacktriangleright using imprecision in active learning

An exemple of structured/complex output

Usual classification

Multilabel classification

4 0 8

Brand C ÷

Introductory examples

Predict whether there is a **p**edestrian, a **b**icycle or **n**othing

Usual costs in classification: 0/1

 Ω

REPARE

Introductory examples

Predict whether there is a **p**edestrian, a **b**icycle or **n**othing

Often, different mistakes have different consequences

Introductory examples

Predict the rate someone would give a movie: **v**ery **b**ad, **b**ad, **g**ood, **v**ery **g**ood

Predictions "further away" from truth worse

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Costs

Cost in prediction problems have two main origins:

- \bullet given by the application (medical diag., intelligent vehicles, \dots)
- **induced by the output structure**

Interests of imprecise probabilities

- structured data often partially missing
- partially predicted structure may contain needed information

Challenges of imprecise probabilities

- build efficient ways to learn and **infer** with costs in such spaces
- provide **readable** and interpretable imprecise predictions

 Ω

A BAK BAK B

Why (not) imprecise probabilities? Why using it?

- you are genuinely interested in having imprecise info/predictions
	- to know when collecting more info (active learning?)
	- to let the decision maker decide about its risk attitude mistakes can be very costly
- you want to postpone precisiation as much as possible
	- to make minimal assumption when processing information
	- you want to postpone precisiation as much as possible

Why not using it?

- you cannot computationally afford it
	- combinatorial issues
	- big data (however, big data \neq lot of data everywhere)
- you have enough data (everywhere)
- making some mistakes is not that damageable (compared to added computational burden)

Talk Outline

¹ **Short reminders about IP and Decision**

- 2 Ordinal regression, or when costs lead to more intuitive results
- ³ Multilabel classification, or when including costs reduces complexity

 Ω

 $\mathbf{A} \equiv \mathbf{A} \times \mathbf{A} \equiv \mathbf{A}$

Some notations

- Set $\mathcal{Y} = \{y_1, \ldots, y_k\}$ of *k* disjoint states
- Space $A = \{a_1, \ldots, a_d\}$ of possible choices/alternatives
- **•** Either a probability p or a (convex) set P of them over \mathcal{Y}
- Cost function $C : \mathcal{A} \times \mathcal{V} \to \mathbb{R}$ with

C(*a*, *y*)

cost of predicting *a* when *y* observed value

Decision with precise *p*

• With the usual 0/1 costs and $A = Y$,

$$
y \succ y' \text{ if } \rho(y) > \rho(y')\text{ if } \rho(y) - \rho(y') > 0\text{ if } \rho(y)/\rho(y') > 1
$$

involves two variables $p(y)$, $p(y')$

 \bullet With generic costs and any A ,

$$
a \succ a' \text{ if } \mathbb{E}(C(a',\cdot)) > \mathbb{E}(C(a,\cdot))
$$

if
$$
\sum_{y \in \mathcal{Y}} p(y)(C(a',y)) - C(a,y)) > 0
$$

involves summation over V

≺ complete pre-order → getting it on A requires *d* comparisons

Decision with set $\mathcal P$

• With the usual 0/1 costs and $A = Y$,

$$
y \succ y' \text{ if } p(y) > p(y') \text{ for all } p \in \mathcal{P}
$$

if $\inf_{p \in \mathcal{P}} p(y) - p(y') > 0$
if $\inf_{p \in \mathcal{P}} p(y)/p(y') > 1$

poptimizing over two variables $p(y)$, $p(y')$

 \bullet With generic costs and any \mathcal{A} ,

$$
a \succ a' \text{ if } \mathbb{E}(C(a',\cdot)) > \mathbb{E}(C(a,\cdot))
$$

if
$$
\inf_{p \in \mathcal{P}} \sum_{y \in \mathcal{Y}} p(y)(C(a',y)) - C(a,y)) > 0
$$

- \triangleright optimizing over *k* variables
- ≺ partial pre-order → requires at worst ∼ *d* ² comparisons

Prediction

Prediction = maximal elements of the (partial) order \prec

4 0 8 1

3 F 4 B

 QQ

Talk Outline

- **1** Short reminders about IP and Decision
- ² **Ordinal regression, or when costs lead to more intuitive results**
- ³ Multilabel classification, or when including costs reduces complexity

 Ω

化重新分离

Ordinal classification setting

Classes $\mathcal{Y} = \{y_1, \ldots, y_n\}$ ranked, but without metric

Other applications:

- \bullet item ranking
- **o** disease severity diagnosis
- reliability analysis (degradation state)

0/1 cost problem

Consider
$$
A = Y = {y_1, y_2, y_3}
$$
 and P

For any possible $p \in \mathcal{P}$

- *• <i>p*(*y*₁) ∈ [0.25, 0.45]
- $p(y_2) = 0.3$
- *• <i>p*(*y*₃) ∈ [0.25, 0.45]

 $p(y_1) = 0.25$ $p(y_2) = 0.3$ $p(y_3) = 0.45$ $p(y_1) = 0.45$ $p(y_2) = 0.3$ $p(y_3) = 0.25$

either $p(y_1)$ or $p(y_3) > 0.3$

Prediction {*y*1, *y*3} contains "gaps"'

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{B}

First way around: usual costs (square)

Choosing the function $f(y_i) = i$ replacing y_i by its rank, we can show

• that taking the square cost

leads to predict ranks $i \in [\underline{\mathbb{E}}(f), \overline{\mathbb{E}}(f)]$ between lower and upper expectations

- \bullet prediction without gaps
- yet, rely on a non-ordinal concept (expect[ati](#page-15-0)[on](#page-17-0)[s](#page-15-0)[\)](#page-16-0)

First way around: usual costs (absolute)

Choosing the function $f(y_i) = i$ replacing y_i by its rank, we can show

 \bullet that taking the absolute cost

leads to predict $y_i \in [Me_p, \overline{Me_p}]$ between lower and upper medians

- prediction without gaps
- relying on an ordinal concept

Previous costs:

- solve the issue with 0/1 costs
- extend well-known results from precise case
- yet, they still require to define a numerical cost

can we do with less assumptions?

Second way around: lower/upper median

e general *V*-shaped symmetric costs such that

 $C(y_i, y_j)$

is symmetric and strictly increasing around *y^j* .

 $C(y_i, y_j) - C(y_k, y_j)$ not numerically defined, yet we have

$$
C(y_i, y_j) - C(y_k, y_j) \text{ is } \begin{cases} > 0 & \text{if } |i - j| > |k - j| \\ = 0 & \text{if } |i - j| = |k - j| \\ < 0 & \text{if } |i - j| < |k - j| \end{cases}
$$

using the notion of sign-preference, we can show that

$$
[\underline{\textit{Me}}_\mathcal{P}, \overline{\textit{Me}}_\mathcal{P}]
$$

is again a natural solution

Talk Outline

- **1** Short reminders about IP and Decision
- 2 Ordinal regression, or when costs lead to more intuitive results
- ³ **Multilabel classification, or when including costs reduces complexity**

Problem introduction

Among a set $\mathcal{L} = \{\ell_1, \ldots, \ell_L\}$ of *L* labels, predict which one is relevant

Kind of problems:

- Image tagging (labels: mountains, cars, sea, animals,. . .);
- Functions of a gene, a protein, ...;
- **o** Topics of documents, ...

Problem setting

- Y: set of binary vectors of size *L*
- $\mathsf{y}^{j} \in \{0,1\}$ j*th* value of $\mathsf{y} \in \mathcal{Y}$
- $y^j = 1$ means j*th* label relevant
- We will consider two costs and sets of predictions:
	- Hamming costs where $A = Y$
	- Ranking costs where $A =$ sets of rankings over $\mathcal L$

Some issues

Computational

Comparing 2 alternatives

- for 0/1 costs and $A = Y$, may be doable
- \bullet for other costs and \mathcal{A} , naive summation prohibitive

Building orders if $\mathcal{A} = \mathcal{Y}$

- 2 *^L* comparisons for complete orders
- 2 ²*^L* comparisons for partial ones

Doable only if *L* small (< 15) and comparisons computationally cheap

Representational

Providing a (big) set of binary vectors as prediction not very user friendly

0/1 cost and problem structure

Under $0/1$ cost and $L = 6$, if

$$
y = \begin{array}{|c|c|c|c|c|c|} \hline 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline \end{array}
$$

is observed, cost *C*(*a*, *y*) of predicting

$$
a = \begin{array}{|c|c|c|c|c|c|} \hline 1 & 0 & 1 & 0 & 0 \\ \hline \end{array}
$$

same as $C(a', y)$ of predicting

$$
a' = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}
$$

the 0/1 cost does not integrate any notion of structure. But is *a* not better than a'?

The Hamming cost

- \bullet $\mathcal{A} = \mathcal{Y}$
- $C_H(a, y)$ hamming distance between *a* and *y*:

$$
C_h(a,y) = \sum_{j \in \{1,...,L\}} \mathbf{1}_{(a^j \neq y^j)}
$$

count the number of mistakes

• reflect the structure of the problem

Example

Under the Hamming loss, if

$$
y = \begin{array}{ccc|c} 1 & 1 & 0 & 1 & 0 & 0 \\ & & & & & \\ \hline \end{array}
$$

is observed, we have cost $C(a, y) = 1$

a= 0 1 0 1 0 0

and $C(a', y) = 6$

$$
a' = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}
$$

4 0 8 1

医单位 医单

Þ

 \sim

 299

Predicting with Hamming cost

- if P probability set over $\mathcal Y$ and
- $[P(y^j = 1), \overline{P}(y^j = 1)]$ the marginal probability bounds
- the prediction A such that

$$
\mathcal{A}^j = \left\{ \begin{array}{ll} 1 & \text{if } \underline{P}(y^j = 1) > 1/2 \\ 0 & \text{if } \overline{P}(y^j = 1) < 1/2 \\ * & \text{else} \end{array} \right.
$$

includes all the maximal elements (and possibly more) obtained using Hamming cost.

- Computing *A* requires only 2*L* estimations and comparisons
- Provides an easily readable and computable outer-approximation

Example

Predicting

includes the predictions

4 ロ ト ィ *同* ト

(米唐) 米唐

 \rightarrow

 299

The ranking cost

- \bullet \mathcal{A} = rankings/set of permutations over \mathcal{L}
- $|A| = L!$, computationally worse than before
- Aim at ranking labels from most to least relevant
- Multilabel observations seen as bipartite dominance graph encoding partial information about ranking
- *CR*(*a*, *y*) number of discordant pairs between *a* and *y*:

$$
C_{R}(a,y)=\sum_{i,j\in\{1,...,L\}^2} \mathbf{1}_{((\ell_i\succ \ell_j)\wedge (y^j=1,y^j=0))}
$$

Example

Consider $L = 6$ and ℓ_1, ℓ_2, ℓ_4 are relevant

Example

Consider $L = 6$ and ℓ_1, ℓ_2, ℓ_4 are relevant

Predicting with ranking cost

- if P probability set over $\mathcal Y$ and
- $[P(y^j = 1), \overline{P}(y^j = 1)]$ the marginal probability bounds
- predicting the partial order \prec such that

$$
\ell_i \prec \ell_j \text{ iff } \overline{P}(y^i=1) < \underline{P}(y^j=1)
$$

has linear extensions including all the maximal elements (and possibly more) obtained using ranking cost.

- Computing ≺ requires 2*L* estimations and at most *L* ² comparisons
- **•** Provides an easily readable and computable outer-approximation
- Drawback: outer-approximation can be of bad quality \rightarrow go beyond interval orders?

Multilabel case: conclusions

Costs:

- allow to encode that some predictions are closer to the observation
- **•** can consider the case predictions are different from observations
	- \triangleright observations seen as degraded information
	- \triangleright use of techniques providing outputs different form observations

"Decomposable" costs

- **•** can lead to efficient and readable inferences
- can pinpoint peculiar values to estimate

Structured output: other problems

• Predicting rankings

- \triangleright preferences over objects
- \blacktriangleright any relation "more xxx than"
- Predicting partial orders
	- \triangleright preferences with incomparability
	- \triangleright acyclic graphs (causal networks?)
- Many other structured outputs
	- \blacktriangleright hierarchical classes
	- \blacktriangleright grammar trees
	- \triangleright (ontic) histograms or fuzzy sets, ...

Other issues and challenges

Learning and evaluating

- How to efficiently learn models?
	- decomposing the problem
	- directly making the prediction (without estimation step?)
	- use of parametric/simplified models
- How can we define an "optimal" IP model?
	- what makes a IP model "better" than another?
	- how to evaluate IP models and imprecise predicitons with costs?
	- how to define this notion so that optimal model is easy to obtain?

Conclusions

- $\bullet \neq$ costs for \neq mistakes in most, if not all practical application
- **•** costs an integral part of many recent machine learning problems
- structured output prediction present technically challenging problems where IP may be useful
- beyond costs for mistakes, need to study cost (value) of information

Some selected references I

[1] Jaime Alonso, Juan José Del Coz, Jorge Díez, Oscar Luaces, and Antonio Bahamonde. Learning to predict one or more ranks in ordinal regression tasks. In *Machine Learning and Knowledge Discovery in Databases*, pages 39–54. Springer, 2008.

- [2] Alessandro Antonucci and Giorgio Corani. The multilabel naive credal classifier.
- [3] Weiwei Cheng, Eyke Hüllermeier, Willem Waegeman, and Volkmar Welker.

Label ranking with partial abstention based on thresholded probabilistic models.

In *Advances in neural information processing systems*, pages 2501–2509, 2012.

 Ω

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{B}

Some selected references II

[4] Sébastien Destercke.

Multilabel predictions with sets of probabilities: the hamming and ranking loss cases.

Pattern Recognition, 2015.

[5] Sébastien Destercke and Gen Yang. Cautious ordinal classification by binary decomposition. In *Machine Learning and Knowledge Discovery in Databases*, pages 323–337. Springer, 2014.

[6] Marie-Hélène Masson, Sébastien Destercke, and Thierry Denoeux. Modelling and predicting partial orders from pairwise belief functions.

Soft Computing, pages 1–12, 2014.

 Ω

A + + B + + B +