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Why bother with non-probabilistic models in risk analysis ?
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Why bother with non-probabilistic models in risk analysis ?

Conclusion

@ Uncertainty plays a key role in risk acceptance ; it cannot be ignored

@ Alarge part of the uncertainty in risk assessment is about the reasoning process and is
subjective.

© Imprecise probabilities models provide a large choice of tools for representing and processing
information

S What is a “good” uncertainty model ?

What is a model ?

“to an observer B, an object A* is a model of an object A to the extent that B can use A* to
answer questions that interest him about A.” Marvin Minsky

A “good” uncertainty model is a model which helps an analyst to handle the uncertainty of his
problem. So the quality of an uncertainty model not only depends on the problem but also on

its ability to be accepted by a community : are expert s confortable to express their knowledge
in the theoritical frame.
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Uncertainty in risk : why it cannot be ignored

- Risk is about an uncertain event
- Deterministic/probabilistic approaches

Uncertainty and reasoning process

- Some telling failures
- Analysis of a paradox

Hox to handle uncertainties : what solutions
The « norm » compliancy or the research
The non probabilistic models of uncertainty

Results derived from an OECD/CSNI benchmark on TH computer codes
The non probabilistic models of uncertainty

Conclusion
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B Uncertainty in risk : why it cannot be ignored
W Definitions

1°) Risk is an uncertain event or condition that, if it occurs, has an effect on at least one
objective.

2°) Risk is the probability or threat of quantifiable damage, injury, liability, loss, or any other
negative occurrence that is caused by external or internal vulnerabilities, and that may be

avoided through preemptive action.

B Questions asked of risk analyst : is it safe, safety measures need to be taken,
is it unsafe ?

SEVERITY

@) 3) @)

LIKELIHOOD

Risk = Event (gravity, severity) * likelihood |
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Uncertainty and reasoning process

Deterministic approach or « centred event » : defence in depth model

intrusion |1 | it - Principle : adding defence lines so that the
ALY | & worst event cannot go through all of them

Another view of the deterministic paradigm : the weak link.
An unwished event is a link and the worst event is the weak link

Security MGT

Which event is the « worst-realistic» event ?
In nuclear safety : the double large break loss of coolant accident ?

l
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Deterministic paradigm or « centred event » Vs nuclear risk

B . 1979 USA TMI : small releases but core fusion
T Multiplicity of “small” dysfunctions

7 : >
e | ,~‘ o (N s

Tchernobyl - M Gorbatchev :
“Some atomic experts had stated that NPPs

were safer than samovars and that we could
build one on Red Square.” »

April 26 1986

CHERNOBYL

Re-emergence of an « old » paradigm : « scenario centred »
Air force Capt. Ed Murphy : “if anything can go wrong, it will”

A scenario is a chain of numerous events :

. « the unexpected is almost certain »
\:} A

S reliable component : A system made up of reliable components
\f“cce“ ~ oo success 0,999°0.959"...%0.9%9 >0
ailure =0.001 failure

I (R




Probabilistic paradigm or « scenario centred » Vs nuclear risk

A B C 4] E
Rupture Supply Core Cooling Products Wall It
System Removal
Pa
Pp x P,
P, ATTE
PA x PD|
Success
Po
' PE: PA x Po" x PE2
Initial Event PaxPe,
Pa Pc, 5 PaxPc, xPp,
Falure ¢
PA x Pa
Ps

Severe accident: 10®/NPPyear ~0,01 expected in the world for lifetime operation

In nuclear safety, both paradigms are used.

In France the deterministic approach is largely predominant,
in USA , the probabilistic one is given more importance .
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Uncertainty and reasoning process
What goes wrong with probabilities ?

Some telling failures :

NASA expected 0.01 for 100 launches
observed 2 failures

Nuclear expected 0.01 for operation lifetime over the world
observed 2 severe accidents
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What is the probability of an event ?

The Bertrand paradox (1888) goes as follows :

Consider an equilateral triangle inscribed in a circle.

Consider the event : “the chord is longer than a side of the triangle”.
What is the probability of this event ?

First solution :
A chord is defined by its endpoints,.

For symmetry reasons, the first endpoint can be one of the vertices of the triangle.

Event “a chord”
take a vertex as endpoint,

choose randomly the other endpoint on the circumscribed circle
check if (or not) is longer than the side
The probability is therefore :
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What is the probability of an event ?

Second solution :

A chord is defined by the location of its middle. Indeed, the line joining
the middle to the centre of the circle is perpendicular to the chord.
Event = “a point”

choose randomly a point within the circumscribe circle

Check the length of the chord
(The chord is longer than a side of the triangle, if its middle is within

the incircle,)
so the probability is the ratio of the area of incircle and circumscribed
circles.

Third solution:
The middle is located on a diameter. So the probability is

Moral of the story :
The probability of an event does not exist, it depends on the process leading to this event.

And what about the probability of a one hundred year flood, or a severe accident ?

For most risk analysts, probabilities are acknowledged as subjective (but not arbitrary).
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Uncertainty handling : compliance or research issue ?

What does the ISO norm tell ?

Extract from the © BIPM-JCGM 200:2008 (Joint Committee for Guides in metrology)
« uncertainty should be grouped into two categories, Type A and Type B, according to whether
they were evaluated by statistical methods or otherwise”

Type A : pertaining to stochastic events
Type B : pertaining to the degree of knowledge of models and their parameters

and the committee’s recommendation is “that they be combined to yield a variance according to
the rules of mathematical probability theory”

For evaluating nuclear risk, the ISO norm is not very helpful. More advanced approaches are
needed .

What can researchers teach to engineers ?
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The non probabilistic models of uncertainty

Random set theory

Possibility : nested intervals

Probability : separated singletons

P-boxes : translated intervals

Imprecise
probabilities

Question from engineers to reseachers : interesting but operational ?

Translation : uncertainty is even more of a nightmare than what | have ever
dreamed of.

Decision : why not a phd student ?

IRSH




Uncertainty in theory : what does a partial knowledge mean ?

CDF probability
Daily beef eaten by an adult

1 20 30 40 50 60 70 80

20 30 40 50 60 70 80

Possibility or P-box

Ph D 2002-2005 20 30 40 50 60 70 80

NB The non-informative prior is difficult in practice : eg the same parameter has opposite effects
depending on quantities of interest.

A cooler water injection is positive for temperature clad but can fragilise the rod
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Uncertainty in practice : how to compute ?

CEVENTS

® LEVEL 1
. g N INTERNAL
Imprecise probabilities EVENTS

A

LEVEL 2

Dée

= CONTAINMENT
‘. “h RELEASE AND
e FREGUENGY

\ ' / Level 1 and level 2 probalistic risk assessment.

Imprecise probabilities require interval computations

The requirements

Imprecise probabilities may lead to unusuable results

Example : opinion poll with or not the « no-opinion » people as «hanging belief mass »
accuracy : ~3% (probabilité theory)
or ~25% (by DST theory) considered as unrealistic by most of pollsters

When no theoritical proof exists , how to get some practical proof ?
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An application : the BEMUSE OECD/CSNI Program

BEMUSE Program : A LBLOCA Uncertainty Study

The BEMUSE program is divided in two steps. The
ot o Broen oop first step consists to perform an uncertainty analysis

’ w Culok oponng ) on an experimental test and the second step on a NPP.
. mo— y Each of these two steps is made up of three phases :
o T\
em::l-e;:::':':ﬂ" Break ¢ First step (Phases 1, 2 and 3): an uncertainty
P oy ‘ analysis of LOFT L2-5
generaor @ W= R scation - Phase 1 : a priori presentation of the uncertainty
=% . e p::e : evaluation methodology to be used by the participants ,
e = L3 - - Phase 2 : re-analysis of the ISP-13 exercise, post-
b, test analysis of the LOFT L2-5 test calculation,
. e - Phase 3 : uncertainty evaluation of the L.2-5 test
Al Loy calculations, first conclusions on the methods and
'- W) i suggestions for improvement.
e ATOZ| N p

Suppression

|
vesse Downcomer

* Second step (Phases 4, 5 and 6): performing this
analysis for a NPP-LB.

- Phase 4 : best-estimate analysis of a NPP-
. LBLOCA,

INELL281505 Rescto vesse - Phase 5 : sensitivity studies and uncertainty
evaluation for the NPP-LB (with and without
methodology improvements resulting from phase 3),

- Phase 6 : status report on the area, classification of
the methods, conclusions and recommendations.
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Figure A-1. Axonometric projection of LOFT system.




BEMUSE Program :
Phase 1 : An integral facility LOFT L2-5 - 10 participating organisations (*)

Phase 2 : A Nuclear Power Plant Zion - 14 participating organisations

Numb. | Organisation | Country Name E-mail Code
1 AFKI Hungary A Guba guba@aeki kfki hu ATHIET 2.0A
i'TTD_th ol tothif@aek kfl hu
- Lrosze trosztel @aeki kfld hu
2 CEA France T Mievsset | thomas misnsset@cea fr CATHARE2
* P Bazin ascal bazin@cea V215 _1i{r5_567)
A.de Crécy agnes decrecvificea fr
3 EDO Foussia S Borisov borosov s]@ggl‘e;s.gnldo]sk_ru TECH-M-97
* GRS Germany T.Skorek Tomasz. Skorek de ATHLET 2.1B
H.Glaeser Horst Glaeser@ors de
* 5 IRSN France TJoucla jerome. jonclaf@irsn fr CATHARE?
P Probst pierre probst@irsn fr V215 1 meds.l
* G JNES Japau AT ui-atsushi @jnes_go_i-p TRACE verd 03
7 KAERI South Korea ED.Chung bdchung @laerire kr MARS 3.1
* 8 KINS South Korea DY .0h k392 ody(@kins re RELAPS/mod3 3
* a NRI-1 Czech Republic | R.Pernica perfiujv.cz RELAPS/'mod3.3
M.Kynel milos kyncl@ujv.cz
* 10 NRI-2 Czech Republic | Jiri Macek | mac@uiv.esz ATHIET21A
* 11 Pl Switzerland A Manera annalisa manera@psich TEACE3rc3
J Freixa jordi@ freixa net
* 12 UNIPI-1 Italy A Petruzzi apetruzzi@ing unipi it RELAPS/mod3.2
FdAuia | 45508 @ing vnipiit
13 UXIPI-2 Ttaly ADelNevo | 5 delnevo/@ing unipi it CATHARE?
F.d'Auria 43808 @ing unipi it V215 1 meds.l
14 UBC Spaiu M.Pétez marina perezi@upc.edn RELAPS/'mod3.3
* F Reventds francesc reventos@upc.edu
L Batet ]
luiz batet@upc edu
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BEMUSE Program : a Monte-Carlo approach used by all the participants

Principle of probalistic methods :
Y =risk model (X, ..., X,) , the quantity of interest its percentile o (95%) denoted Y,

If Xi are random variables, by simulating a given number of values , we can evaluate Y, by Monte-Carlo simulation

‘PDF l

O System Model
Palrameter O—] Model
éziistur?butions OoO—| Eieisstl:iléutions
e Submodels LR
Monte-Carlo principle The empirical CDF

A

,\,

»
- >

CDF(x) =( number of Xi< X ) / sample size
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BEMUSE Program : a Monte-Carlo approach used by all the participants

A hundred year flood means o = 0.99

Yo

Y(i) ordered occurrences

Theorem order statistics P (Y < Y, Yy ) = Betay y.qy(a)-Betag n..1y(a)

Operationality of these methods :
No need to reduce the number of uncertain parameters

Limited cost ~100 computational runs are required to derive a confidence interval of the desired percentile
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BEMUSE Program : 50 random parameters, 10 output quantities

Number of computer code runs and the corresponding calculations for interest quantities

N Percentile confidence intervals = numerical accuracy
95% 95% 99%

60 57 [ X52) » X60) ] 2 X(e0)

100 95 [ X(go) ’ X(99) 1 [ X(89) ’ X(100) ]

200 190 [ X184y » X(196) ] [ X(182) » X(198) ]

500 475 [ X(465) ’ X(485) 1 [ X(462) ’ X(487) ]

The interval span is the numerical accuracy of the MC simulation at a given confidence level
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BEMUSE results : uncertainty quantification of the cladding temperature

AEKI - Maximum cladding temperature CEA — Maximum cladding temperature
MENRPZ=ay NN
S ] Jf o ‘\H"'\ ey i -"“""-"” l“-q'_‘l'q\\
i 'Ir:: ™ 1 1188 — =
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IRSN-IRIT BEMUSE contribution

The 8 out 10 most influential uncertain input parameters considered as
possibilistic

Name Nom. | Variation Range
Value
Liquid-wall friction 1 [0.8:1.9]
Fuel conductivity(Tfuel<2000K) 1 [0.9:1.1]
Vapour-wall heat transfer (forced convection 1 [0.5:;2]
regime)
Peaking factor hot rod 1 [0.95;1.05]
Heat transfer "flashing” 1 [0.05;1]
Initial Upper header mean temperature +10°K 1 [1:4]
Initial loop mass flow rate +/-4% (head pump) 1010 |[810;1210]
Friction form loss in the Pressurizer line 1 [0.5;2]
Hot gap size hot rod 1 [0.8:1.2]
Initial Power +/-2% (power before scram) 1 [0.98;1.02]
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IRSN-IRIT uncertainty modelling

Random set theory
Possibility : nested intervals
_ Probability : separated
Uncertainty _
theories : singletons
Initial Power (+/- 2%) Initial Power (+/- 2%)
Imprecise [-0.5,+0.5]
pnaites || (39 (@) (@) (@3
[-1.0,+1.0]
[-1.5,+1.5]
. P-boxes : [0.5,2]
translated [1.0,1.0]
. [-1.5,0.0]
intervals
[-2.0,-0.5]
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MC algorithm extended to imprecise variables

;(1(1) @ 0 (l'); (i)

%)
Xk Xitl X Xy

random variable Imprecise variable

At each step : a value or an interval is selected, so that the result of any output quantity is an interval

XM X
0 | y A pair of CDFs instead of a single one
v A
0 —
XM X
i 1 ———
, 0 i
X X
; ; L =

value

v
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BEMUSE results : 95%-percentile of PCT

A Safety limit
Methods 1204°C=2200°F
Imprecise Triangular probability distributions for Peaking factor hot |
yrobability model rod and Hot gap size hot rod, possibility distributions for N
the 8 remaining uncertain parameters LN
|
Probabilistic method ) :
| | | | | | N
| | | | | | >
899 934 1072 1191 1224 1278
PCT1 °

==> - Epistemic uncertainties or effect of pdf choices : ~190°C
This effect is very similar to the user effect observed between
BEMUSE participants : 860°C to 1150°C

==> - Numerical accuracy :~30°C (sample size 500) relatively weak
with respect to user effect or epistemic uncertainties
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Uncertainty in theory and practice : some promising results

< LEVEL 1
N e

EVENTS

Imprecise probabilities

< J
<« LEVEL 2
: : Pebedas CONTAINMENT
. K| e RELEASE AND
o FREQUENGY

\ ' / Level 1 and level 2 probalistic risk assessment.

Monte-Carlo algorithms extented to non probabilistic models

A practical guide for uncertainty elicitation with imprecise probability models

Objectives :
Information scoring
information synthesis

PhD 2005-2008

IRSH




BEMUSE Program : the CDF provided by participants as information sources

First PCT Maximum PCT

0.012 +

0.010 +

0.008 +

df

-1
0.006 +

0.004 +

0.002 +

Vas% |

=&==All participants
— =—AEKI
Y,195% CEA
Ej EDO

- - - GRS
——IRSN
— JINES
= —KAERI
———KINS
——NRI1
——-"NRI2
———PSsl
=== UNIPI1
. - == UNIPI2
---UPC

pdf

0.012 +

0.010 +

0.008 +

0.006 +

1000 1100 1200

temperature (K)
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How to score the participants results : a simplification step

. o 1-AEKI
First PCT (°K) -
——2-CEA
* 9 R
1350 / \ ! hi —+—4-GRS
1300 vl R e 5-IRSN
‘ —e— 6-INES
1250 ( ) a S KARR
1200 ! \0 / 1 v ¢ T * / \ | ——7-
| N ¢ ¢ I LI \ / 4 —e— 8-KINS
1150 Y + )y )y A < i —e—9-NRI1
1100 ' 10-NRI2
. \1 ( ) ! ——
1050 —o—11-PS|
1000 U —e— 12-UNIPI1
950 - —o— 13-UNIPI2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |—+14-UPC
—e— Mean

Some visual results :

1°) Large differences between uncertainty bands

2°) No overlapping between uncertainty bands

3°) Mean, Min-Max ... what aggregation operator is right ?
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Principle of Information scoring

JCGM 200:2008 : International vocabulary of metrology

Trueness Precision Accuracy

closeness of agreement closeness of agreement between

between the average of an indications or measured quantity closeness of agreement

infinite number of replicate values obtained by replicate between a measured

measured quantity values and measurements on the same or quantity value and a true

a reference quantity value similar objects under specified quantity value of a
conditions measurand

Probabilistic Risk Analysis Cambridge 2001 T. Bedford, R. Cooke

Calibration Informativeness Score
measures the coherence between measures the precision of measures the quality
information provided by the source the information of the information

and the experimentally observed value
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N information scoring [N

1PCT (K) 2PCT (K) Tinj () T, (s)
Low Ref Up |Low Ref Up |Low Ref Up | Low Ref Up Score = Inf * Cal
CEA | 919 1107 674 993 1176 | 148 162 16.8 | 30 69.7 98
GRS 969 1058 1107 | 955 1143 1171 | 14 156 17.6 | 62.9 80.5 103.3 An example: Tinj
IRSN 872 1069 1233)| 805 1014 1152 | 158 168 I7.3 | 41.9 50 120 informativeness =0 for 9-UNIPI
(smallest and largest value)
KAERI | 759 1040 1217 | 598 1024 1197 | 127 135 16.6 | 60.9 73.2 100
KINS 626/ 1063 1097 | 608 1068 1108 | 13.1 13.8 13.8 | 47.7 669 100 calibration =0 for 5-KINS
(experimental value outside of
NRI1 913 1058 1208 | 845 1012 1167 | 13.7 147 17.7 | 51.5 66.9 87.5 the confidence interval )
NRI2 903 1041 1165 | 628 970 1177 | 128 153 17.8 | 47.4 627 82.6
PSI 961 1026 1100 | 887 972 1014 | 152 156 162 | 55.1 785 88.4 "
For a set of quantities, the
TUNIPI 992 1099 1197 | TO8 944 1118 @ 16.0 @ 41.4 62.0 81.5 global Scorlng |S taken as
UPC | 1108 1177 1249 | 989 1157 (1222| 12 135 165 | 565 635 66.5 the average of single
Exp. Val. 1062 649 scorings
Probability Possibility
0,0035 ! AN
0,003 0,9 / \
| 0,8 —IRSN
0,0025 0,7 / \
0,002 — IRSN 0,6 / \ — ignorance
0,0015 —— ignorance g:Z // \\ —exp
0,001 ——d 0,3 / N\
0,2 /
0,0005 o1 7 N
0 ‘o / \

750

850

950 1050 1150 1250

950

1050 1150

1250

B
1p. =Y pilog 2| Cal()=1-1.. 2*N*1(r, p))
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BEMUSE-phase 3 : information scoring results

Evaluation : informativeness, calibration

Participants Infor. Calib. Global Infor. Calib. Global
Proba Proba Proba Poss Poss Poss
CEA 8 5 6 8 7 7
GRS 4 1 1 3 6 6
IRSN 5 2 2 6 1 Cv
KAERI 9 5 7 9 8 8
KINS 3 5 Cs5) 7 3 3
NRI1 7 2 3 5 5 C4
NRI2 6 8 8 4 2 2
PSI 1 10 1 10
UNIPI 10 2 @ 10 4 @
UPC 2 9 @ 2 9 @

Good agreement with the “visual” analysis
and also between formal methods (4 out of 5 first organisms, the last 2 are common)
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Information fusion : three main fusion operators

2
Weighted average Disjunctif (= union) Conjunctif (2 intersection )
k .8 ---- IRSN,KINS,NRH,UNIPI "'{’;\‘
A
7\
= z ¥ \
3 N \“

An automatic way of identifying conflicts between participants
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Why bother with non-probabilistic models in risk analysis ?

Conclusion for the 21 thesis

Extension to possibilistic formalism of R.
. : Cooke's probabilistic information scoring
Information scoring

High similarity with probabilistic formalism

M\, A . .
PhD 2005-2008 Development of a larger choice of fusion
operators

Information synthesis Identification of concordant/discordant

participants, code/user effects

« information synthesis methods seem a convenient tool to progress towards a rational consensus and
help to better understand the differencies between participant results. » final BEMUSE report
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Why bother with non-probabilistic models in risk analysis ?

Conclusion

@ Arisk evaluation of a complex system needs to aggregate a set of different knowledges (the
human part of it is of prime importance)

Risk evaluation is more an epistemic than an ontic issue ?

©  For these reasons, in some applications imprecise probabilities are useful

They can facilitate debates between experts useful to improve risk analysis

Engineers are generally more concerned about the suitability of a model than its label :
“frequentist”, “Bayesian”, “DST” ....

“the proof of the pudding is in the eating”
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