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Recent projects on multi-agent learning

I Learning semantics via coordination on model-checking games.

I Learning roles through voting behavior and mass functions.

I Collective learning in games through social networks.
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Serious Games: Examples of Teams Learning in Games
Military Training: US Army

Screen from Serious Games by Harun Farocki (2011)



Practical Motivation: Serious Games and Social Networks

Merging techniques of serious games and social networks.

Constructing an active (games) and social (networks) learning environments.



Decisions one needs to make

1. Game Structure: players, actions, individual payoffs.

2. Learning Goal: what the players should eventually learn.

3. Social Network Learning (SNL) Update: how agents update their
private information after communicating in the network.

4. Gameplay: defines how agents determine what strategy they will play in
the game after communicating with neighbors in the network.

5. Game Learning (GL) Update: how agents use information about
strategies and corresponding rewards to reinforce their strategy and learn
from previous actions in the game.



The Game-Network Learning Model: Main Idea

Cooperative games:

I Grand coalition

I Group-rational players

Collective learning:

I Goal: learn towards social optimum

I Update beliefs about joint strategies

Two belief updates:

I After network communication (feedback from neighbors)

I After gameplay (feedback from payoffs)
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Input: Individual Beliefs

Stochastic belief matrix:

B =

b11 . . . b1k

...
...

bn1 . . . bnk



For example:

B =

1 0 0
0 1 0
0 0 1


Rows are agents, columns are joint strategies.
The entries are strengths of belief in a strategy being the optimal one.
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Step 1: Network Communication

1. Weights of trust:
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Player’s perspective: weighted average of beliefs of neighbors.
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Step 2: Belief Aggregation

I Purpose: deciding collectively which joint strategy to play

I Method: probabilistic social choice function (PSCF)

B =

b11 . . . b1k

...
...

bn1 . . . bnk

 7→ ~b =
(
b1 . . . bk

)

I Averaged probabilistic social choice function (aPSCF): takes (weighted)
average of beliefs and outputs it a societal probability distribution rather
than an ordering.1/2 1/2 0

1/3 1/3 1/3
0 1/2 1/2

 7→
(
5/18 8/18 5/18

)
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Axiomatic Properties for aPSCF and wPSCF

Independence of Alternatives X X
Unanimity X X
Neutrality X X
Anonymity X X
Pareto Optimality X X
Social Rationality X X
Non-Dictatorship X -
Consistency X -
Strategy-Proofness - -
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Step 3: Gameplay and Reinforcement

Reinforcement learning:

I Stochastic games

I Law of Effect

I Learn towards high reward

Collective reinforcement learning:

I Reinforce joint strategies

I With social welfare fraction



Motivation: Examples of Teams in Games
Team Sports: NBA League

In NBA stats earn you money.
Why would you fire the best players?

‘The secret of basketball is that it’s not about basketball.’

‘And that’s what Isiah learned while following those Lakers and

Celtics teams around: it wasn’t about basketball. Those teams

were loaded with talented players, yes, but that’s not the only

reason they won. They won because they liked each other, knew

their roles, ignored statistics, and valued winning over everything

else. They won because their best players sacrificed to make

everyone else happy. They won as long as everyone remained on

the same page.’

http://www.nba.com/playerfile/lebron_james


Reinforcement in the Game-Network model

Remember belief aggregation:1/2 1/2 0
1/3 1/3 1/3

0 1/2 1/2

 7→
(
5/18 8/18 5/18

)

Now suppose the players:

I Play joint strategy s(2) with probability 8/18

I Receive average social welfare U(s) = 1/6
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Reinforcement in the Game-Network model

Belief update about joint strategies:1/2 1/2 0
1/3 1/3 1/3

0 1/2 1/2

  

5/12 7/12 0
5/18 8/18 5/18

0 7/12 5/12



By Bush-Mosteller reinforcement:

s(1) : b21 = 1/3− 1/6 · 1/3 = 5/18

s(2) : b22 = 1/3 + 1/6 · 2/3 = 8/18

s(3) : b23 = 1/3− 1/6 · 1/3 = 5/18
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More on reinforcement

After aggregation by aPSCF, the coalition holds a societal probability
distribution over the set of joint strategies. A joint strategy chosen to be
played with certain probability. Players get to know the corresponding social
welfare and calculate an average fraction. The fraction is used by each player
for reinforcement.

I Probability of played strategy is increased by a payoff-dependent fraction
of the distance between the original probability the max. probability 1.

I The probability of other strategies are decreased proportionally.

Two advantages of Bush-Mosteller reinforcement:

I makes use of utility values that are scaled in the interval from 0 to 1.

I violates Law of Practice: learning does not slow down.
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Learning Effect

Can network communication in a game have a positive influence
on the learning outcome?

Can network communication speed up learning
towards social optimum?

Can network communication increase the probability
for playing the social optimum?



Learning Effect at a Given Round t

Dependent on the network expertise and network structure

Definition (Expert for round t)

We say an agent ie ∈ N is an expert for round t if his belief for the social
optimum is higher than the average belief of society for the social optimum.

Definition (Maximal Expert for round t)

We say an agent im ∈ N is a maximal expert for round t if his belief for the
social optimum is maximal.
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Learning Effect at a Given Round t

Dependent on the network expertise and network structure

Definition (Weight Centrality)

Let wi =
∑

m∈N wmi be the total weight that agent i receives from his
neighbours. The weight centrality of some agent i ∈ N is then given by the
fraction Cw

i = wi
n

.

Theorem
If Cw

im >
1
n
≥ Cw

i for all maximal experts im ∈ E tmax and other players
i ∈ N\E tmax, then the probability for playing the social optimum at round t after
network communication is higher than before network communication.
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Learning Effect in the Long Run

Definition (Stable Expert)

Let E t be the set of experts for round t. We say an agent i ∈ N is a stable
expert if i is an expert for any round.

Theorem
Let E1 be the set of initial experts for round t = 1. If

(i) E1 is maximally closed; and

(ii) E1 is in agreement at round t = 1,

then E1 = E tmax ⊆ E t for all t ≥ 1, so that stable experts exist.
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Learning Effect in the Long Run

Definition (Stable Expert)

Let E t be the set of experts for round t. We say an agent i ∈ N is a stable
expert if i is an expert for any round.

Theorem
Let E1 be the set of initial experts. If

(i) E1 is maximally closed;

(ii) E1 is in agreement at round t = 1; and

(iii) Cw
ie >

1
n
≥ Cw

i for all ie ∈ E1 and i ∈ N\E1,

then the probability of playing the social optimum after communication is
higher than before network communication at every round t ≥ 1.



Conclusions

Theoretical conclusions:

I Interdisciplinary computational model

I For learning in cooperative games through social networks

I Communication positively influences learning:

(i) Experts with high weight centrality: given round t

(ii) Stable experts with high weight centrality: every round

I Applications in Airline Safety Heros in CAG



Perspectives

Directions for future work:

I Simulations in progress

I Competitive games (between coalitions?)

I Dynamic networks and changing trusts

I Epistemology for modeling knowledge

I Psychological experiments: serious games & social networks



Thank you!



Appendices



Recommendations towards Serious Games

1. Include independent experts with central position

2. Include game elements enhancing experts’ reliability

3. Include accessible non-human resources in network

4. Include (group) rewards for cooperation

5. Include private chats rather than blogs for non-experts



Case Study: Airline Safety Heroes

Game players: employees of an airline company

Game objective: learn how to prevent and solve unsafe situations

Game type: digital cards game

(i) Three types of cards:
(1).1 unsafe situation
(2).2 prevention tool
(3).3 solution

(ii) Forming a set:
(1).1 exchange with stock
(2).2 exchange with players



Case Study: Airline Safety Heroes

Expand the game with social network communication:

1. Card exchange via online chat functions

2. Communication about correctness of sets

3. Managers / employees of safety department as experts

4. Provide experts with central position

5. Group rewards for helping co-players



Algorithms (I)

Algorithm 1 Network Communication at round t

Input: Weight matrix W ; probability matrix B t

1: for all i ∈ N, s(j) ∈ S : bt+

ij :=
∑

m∈N wimb
t
mj

2: B t+

:=
(
bt+

ij

)
n×k

= W · B t

Output: Probability matrix B t+

Algorithm 2 Belief Aggregation at round t

Input: Probability matrix B t+

1: for all s(j) ∈ S : bt+

j := 1
n

∑
i∈N bt+

ij

2: ~bt+

:= (bt+

1 , . . . , bt+

k )

Output: Probability vector ~bt+



Algorithms (II)

Algorithm 3 Gameplay and Reinforcement at round t

Input: Probability vector ~bt+

; probability matrix B t+

1: s t := s(j), s.t. s(j) is drawn from S with probability bt+

j . Gameplay
2: U(s t) := 1

n

∑
i∈N ui (s

t) . Average s.w.
3: for all i ∈ N, s(j) ∈ S : . Reinforcement

bt+1
ij :=

{
bt+

ij + λ · U(s t)(1− bt+

ij ) if s(j) = s t

bt+

ij − λ · U(s t)bt+

ij if s(j) 6= s t

4: B t+1 :=
(
bt+1
ij

)
n×k

Output: Probability matrix B t+1



Hidden Assumptions (I)

Game structure

(i) In each round each player i can choose from the same set Si of possible
strategies to play in the stage game and this set is equal for all players.
Utility functions ui are scaled between 0 and 1.

(ii) Players do not know their own or others’ utility functions. The utility
after each round of gameplay, together with the average social welfare, is
revealed to all players separately, before the next round starts.

(iii) Players have a bounded memory: at each round t players only know their
probabilistic beliefs and received payoffs from the previous round t − 1.
(Not needed in case players do not know actions of others.)

(iv) Players are group-rational. They act as a single grand coalition and play
honestly.



Hidden Assumptions (II)

Network structure:

(i) The weighted edges in EW represent how much an agent trusts his
neighbour in the network with regard to his expertise about the game
being played.

(ii) The network structure and corresponding weights of the directed edges are
determined beforehand and do not change while the game is played.

(iii) Players in the network are only able to directly communicate about the
game with their neighbours.

(iv) Players are not aware of the entire network structure, they only know who
their neighbours are. They do know however, how many players exist in
the entire network.



Networks, Beliefs and Rationality

Belief:

I How to interpret degrees of belief?

I Threshold: i believes θ is true iff bi (θ) ≥ p, for p ∈ [0, 1]

I But then: how to define consensus/agreement?

Trust:

I Drawback: changing beliefs about others’ beliefs not allowed

I Changing trusts avoids duplication of information

I In fact: matrix calculation ‘changes’ trusts by associativity

Rationality:

I Taking into account opinions of untrusted neighbours

I Agents rationally agree with method ⇒ consensus is rational

I Initial assignment of weights without bias



Axiomatic Properties for wPSCFs

Notes:

I Unanimity: bi-implication for winner certainty and zero unanimity only
holds for aPSCFs, not for wPSCFs.

I Anonimity: if b′i q = bσ(i) q then F (B) = σF (B ′), where σF is the wPSCF
obtained by permuting the weight vector that defines F , using σ.

I Pareto optimality and Monotonicity: special notion for only wPSCFs
that requires the individual ı̂ ∈ N to have a positive weight.

I Consistency: one could define a wPSCF Fn+m for two merged groups N
and M by the normalized weight vector
~w = (aw1, . . . , awn, (1− a)w ′1, . . . , (1− a)w ′m) for any a ∈ [0, 1].
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