# COMPUTING THE OPTIMAL GAME

... and implications for possible and necessary winners of tournament solutions

Markus Brill (University of Oxford)

Joint work with Rupert Freeman & Vincent Conitzer

LABEX CIMI Pluridisciplinary Workshop on Game Theory



### **Motivation**

- Game designer with limited control
  - between game theory (no control) and mechanism design (full control)
- Also captures settings without designer
  - settings with (non-probabilistic) uncertainty about payoffs
  - empirical game theory: expensive to determine payoffs
- Social choice functions defined via games
  - bipartisan set (BP): equilibrium actions of tournament game based on pairwise comparisons of alternatives
  - possible/necessary BP winners = poss./nec. equilibrium actions

# Setting

- Two-player zero-sum games (aka matrix games)
  - incomplete matrix games: some payoffs given by sets
  - completion: pick one element from each set
- We are interested in Nash equilibria of completions
  - possible equilibrium action: action played with positive probability in *some* completion
  - necessary equilibrium action: action played with positive probability in *all* completions
- To avoid multiplicity issues: quasi-strict equilibrium [Harsanyi 1973]
  - unique support in matrix games [Brandt & Fischer 2008]
  - support consists of all actions that are played in some Nash equilibrium

# Outline

- Matrix Games
  - greedy algorithm
  - complexity results
- Tournament Games
  - bipartisan set
  - complexity results
  - MIP formulation
- Future Directions

#### **Greedy Algorithm for Matrix Games**

Idea: Check whether action a\* is a possible EA by only considering the extension that maximizes u(a\*,·) and minimizes u(b,·) for b≠a\*.



#### Hardness Results for Matrix Games

- **Theorem.** Computing possible equilibrium actions of an incomplete matrix game is NP-complete.
- **Theorem.** Computing necessary equilibrium actions of an incomplete matrix game is coNP-complete.
  - Proof: Reduction from SetCover

|           | $c_1$      | $c_2$      | $c_3$      | $c_4$      | $c_5$ | $s_1$ | $s_2$ | $s_3$ | $s_4$ | $s_5$ | t     |
|-----------|------------|------------|------------|------------|-------|-------|-------|-------|-------|-------|-------|
| $S_{1,1}$ | 0          | H          | -H         | H          | -H    | В     | В     | 0     | 0     | 0     | $N_1$ |
| $S_{1,2}$ | $\{-1,1\}$ | H          | -H         | H          | -H    | -1    | -1    | 0     | 0     | 0     | $N_2$ |
| $S_{2,1}$ | -H         | 0          | H          | -H         | H     | 0     | 0     | B     | B     | 0     | $N_1$ |
| $S_{2,2}$ | -H         | $\{-1,1\}$ | H          | -H         | H     | 0     | 0     | -1    | -1    | 0     | $N_2$ |
| $S_{3,1}$ | H          | -H         | 0          | H          | -H    | 0     | 0     | B     | 0     | В     | $N_1$ |
| $S_{3,2}$ | H          | -H         | $\{-1,1\}$ | H          | -H    | 0     | 0     | -1    | 0     | -1    | $N_2$ |
| $S_{4,1}$ | -H         | H          | -H         | 0          | H     | 0     | В     | 0     | B     | 0     | $N_1$ |
| $S_{4,2}$ | -H         | H          | -H         | $\{-1,1\}$ | H     | 0     | -1    | 0     | -1    | 0     | $N_2$ |
| $x_1$     | H          | -H         | H          | H          | -1    | 0     | 0     | 0     | 0     | 0     | 0     |

















| Тс       | ourn               | ame           | ent (        | Gan         | les |                          | 1                                                          |                                                           |             | ŝ                                                                    |
|----------|--------------------|---------------|--------------|-------------|-----|--------------------------|------------------------------------------------------------|-----------------------------------------------------------|-------------|----------------------------------------------------------------------|
|          |                    |               |              | Carr        |     | 1                        | 0                                                          | 1                                                         | 1           | 1                                                                    |
|          | AVEN               |               |              |             |     | Free                     | -1                                                         | 0                                                         | 1           | 1                                                                    |
|          | CTT CTT            | FCB           | G            |             |     | <b>TURNUS</b>            | -1                                                         | -1                                                        | 0           | 1                                                                    |
| <b>E</b> | 0                  | 1             | 1            | {-1,1}      |     | Ś                        | -1                                                         | -1                                                        | -1          | 0                                                                    |
|          |                    |               |              |             |     |                          |                                                            |                                                           |             |                                                                      |
| FCB      | -1                 | 0             | 1            | 1           |     |                          | 1/3                                                        | 1/3                                                       | <b>E</b>    | 1/3<br>💰                                                             |
|          | -1<br>-1           | 0<br>-1       | 1<br>0       | 1           |     | 1/3 🍏                    | <b>1/3</b>                                                 | <b>1/3</b>                                                | 1           | 1/3<br>💰<br>-1                                                       |
|          | -1<br>-1<br>{-1.1} | 0<br>-1<br>-1 | 1<br>0<br>-1 | 1<br>1<br>0 |     | 1/3 🍏<br>1/3 🎩           | <b>1/3</b><br><br>0<br>-1                                  | <b>1/3</b><br><br>1 0                                     | <b>1</b>    | <b>1/3</b> -1 1                                                      |
|          | -1<br>-1<br>{-1,1} | 0<br>-1<br>-1 | 1<br>0<br>-1 | 1<br>1<br>0 |     | 1/3 資<br>1/3 <b>1</b> /3 | <ul> <li>1/3</li> <li>0</li> <li>−1</li> <li>−1</li> </ul> | <ul> <li>1/3</li> <li>1</li> <li>0</li> <li>−1</li> </ul> | 1<br>1<br>0 | <ul> <li>1/3</li> <li>5</li> <li>-1</li> <li>1</li> <li>1</li> </ul> |

#### Hardness Results for Tournaments

- Bipartisan set (BP) of a tournament game: all alternatives that are played in equilibrium [Laffond, Laslier, & Le Breton 1993]
  thus: pos./nec. equilibrium actions = pos./nec. BP winners
- **Theorem.** Computing possible (necessary) BP winners of incomplete tournament games is (co)NP-complete.
  - Proof: reduction from 3SAT. ... cyclones! ... components!! ... local reversal!!!
- Theorem. In weak tournament games (with ties and payoff sets {-1,0,1}), computing possible & necessary equilibrium actions is NP-hard.
  - hardness even holds for continuous payoff sets [-1,1]
  - equilibrium actions of a weak tournament game: "essential set" [Dutta & Laslier 1999]



#### **MIP Formulation for Tournament Games**

 We formulated the possible equilibrium action problem for (weak) tournament games as a mixed integer linear program



### **Future Directions**

- Lots of potential for future research!
- Other solution concepts
  - Stackelberg equilibrium, correlated equilibrium, (weak) saddles, ...
  - tournament games: minimal covering set
- (More) efficient algorithms
  - extend MIP approach to more general game classes
  - continuous payoff sets
  - tractable special cases

Thank you!